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Multivariate control chart, Recognizing the contributors of a multivariate process
statistical process control, disturbance is a critical research issue and has recently
variance shifts. drawn a great deal of attention. To recognize the quality

variables of process faults in multivariate processes, most
current studies use machine learning techniques or
decomposition approaches. Additionally, most research has
attempted to identify the sources of process mean shifts. As
opposed to most of the current research, this study proposes
to use a simple outlier testing procedure to determine the
quality fault variables responsible for the process variance
shifts. In this paper, we first introduce a statistical test for
identifying outlying variances in a multivariate normal
distribution. Then an iterative test method is employed to
determine the contributors to process variance shifts. As
demonstrated by simulation results and a practical
illustrative example, the proposed method is effective and
easy for recognizing the quality variables responsible for
variance shifts in a multivariate normal process.

1. Introduction

To improve the underlying process, process personnel has always desired to find faults in
real time. For several decades, statistical process control (SPC) charts have been successfully
applied to monitor process faults. With technological advancements allowing for the use of more
and more sophisticated sensors, the process of monitoring multiple quality characteristics has
become increasingly popular. The multivariate SPC chart is commonly used for monitoring
process faults. Nevertheless, the out-of-control signal simply reveals that process defects have
occurred at hand. It is difficult to determine the source(s) of a triggered multivariate SPC signal
because of the features of multiple quality variables. Consequently, identifying the contributors
of process faults has become a critical issue in multivariate SPC, resulting in the rapid growth
of related research.

In the literature, machine learning methods have been suggested as a way to determine the
source of process shifts. For example, Cheng and Cheng (2008) used neural networks and support
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vector machines to identify the source of variance shifts in the multivariate process. Brian
Hwarng and Wang (2010) proposed a neural network-based identifier for multivariate
autocorrelated processes. Shao et al. (2010) considered that the flexible discriminant analysis
using multivariate adaptive regression splines (MARS) and BRUTO features can effectively
identify the sources of variance shifts. Shao and Hou (2013) modeled a hybrid artificial neural
network for fault identification of a stochastic multivariate process. Shao et al. (2016) employed
two computational intelligence approaches, artificial neural networks (ANN) and MARS, to
classify the sources of variance shifts in a multivariate normal process. Shao and Lin (2019)
presented a time delay neural network (TDNN) classifier to diagnose the quality variables that
cause out-of-control signals for a multivariate normal process. Zheng and Yu (2019) proposed a
hybrid system that composes support vector machines (SVM) and convolutional neural networks
(CNN) techniques. Zhang et al. (2021) proposed a hybrid deep learning model that integrates a
one-dimensional convolutional neural network (1-DCNN) and stacked denoising auto-encoders
(SDAE) to extract high-level features from complex process signals. Giiler et al. (2024)
developed a hybrid independent components analysis-support vector machines method to
pinpoint the sources of mean shifts in both multivariate normal and non-normal processes. Also,
decomposition statistics were applied to identify the contributors to process faults. For example,
Runger et al. (1996) proposed the use of different metric distances to decide which variables
have shifted. Mason et al. (1997) developed a cause-selecting procedure using the decomposition
of the T statistic. Vives-Mestres et al. (2016) considered two distinct methodologies for signals
interpretation of T control chart for large and small dimensional compositional data. Kim et
al. (2016) proposed an adaptive step-down procedure using conditional T? statistic for fault
variable identification. Pifila Monarrez (2018) applied Hotelling’s T? decomposition method to
the R-chart. Ozdemir Giiler and Balkir (2022) used independent component analysis to detect
and identify the mean shift. Haq and Khoo (2022) proposed an adaptive multivariate EWMA
charts based on variable sample size and variable sampling interval techniques to identify the
sources of a mean shift in the multivariate normal process. Ahsan et al. (2024) developed a T
based PCA mix control chart to determine the source of process shifts.

Although the machine learning approach may provide possible solutions, it may require a
large amount of data and huge computing resources to perform better. In addition, there is no
standard theory to guide process personnel in choosing the right model, as it has several
parameters that need to be tuned through trial and error. Therefore, different personnel may
get different results, and the method may be difficult to be adopted by less skilled personnel.
While the statistical decomposition methods may offer some solutions, the mathematical
difficulty in applying them may limit their application. Therefore, in contrast to the current
research studies that use machine learning or decomposition approaches to recognize the sources
of process faults, this study seeks to develop a simple test method that can effectively find the
quality variables responsible for process variance shifts.

The remainder of the paper is organized as follows. The next section presents the proposed
testing procedure for recognizing the quality variables responsible for variance shifts in a
multivariate normal process. Section 3 provides the results of simulations, demonstrating the
effectiveness of the introduced procedure. In section 4, a real-life example is provided to illustrate
the proposed procedure. The study is concluded in the final section.
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2. The proposed method
Let
X =[X,X, .., Xm]', i=1,2,..,n (2.1)

represent the P characteristics of the " observation with a multivariate normal
distribution N, (#X) , where H=[g,l, i, T=Cow(X)=[0,],, , and
o, =cov(X,,X,) . Suppose that X,X,,..X, is a random sample taken from the
multlvarlate normal distribution mentioned above. The sample means vector and covariance
matrix are therefore

X- %zx = (X, X,y X)) (2.2)
and
S S, S1p
S=ﬁ27zl(xi—)‘()<x,—i>'= Sﬁl o Sﬁ” , (2:3)
Sp S Sy,

respectively. There have been some multivariate control charts proposed to monitor a
variance shift in a multivariate process. An example is Alt (1985) who proposed to use the
sample generalized variance |S|, and the following control limits:

UCL=|Z,|(h,+3,/b,)
(2.4)
LCL=

where UCL and LCL represent the upper and lower control limit, |ZO| is the determinant
of the in-control covariance matrix, and

" —I)PH(

(2.5)
1)2" H( —Z)(H(l’l—l+2) H(n—l)j

Generally, an unbiased estimator can be used to estimate the parameter |ZO| when it is
unknown. As an out-of-control signal is triggered in such a multivariate control chart, it
can be challenging to determine the cause-assignable variables. In the next subsection, we
develop a test for detecting outlying variance of the multivariate normal distribution. Then
we propose an iterative test approach for identifying the quality variables responsible for
process variance shifts.
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2.1 A test for the identification of outlying variance

Note that X, has the distribution N » (4, X), therefore X ; has a normal distribution

N(u;,0 ;). For testing the null hypothesis H 1oy, = G;.j(-)),
_(n-DS;

J (0) )
G/J

we can use the test statistic
(2.6)

which has a chi-squared distribution with (7 —1) degrees of freedom. There might be
many circumstances in which the hypothesis H :0;, = (71(? ),(722 = Gég),...,o‘ = GLOP) needs to
be tested, which denotes a prespecified variance vector. For identifying positive outlying
variances in the multivariate normal distribution, it may be appropriate to apply the largest
ordered statistic
mjaij. (2.7)
Hence, at significance level & | the test for such an alternative would be to reject the null
hypothesis as
m?ij >, (2.8)

where ¢ satisfies
J

P|:max7"j. >c|H0}=a. (2.9)

Because 1),T,,...,T, are correlated, the distribution of m?x 1, has no analytical form. As
a result, determining the critical value is not an easy task. In order to approximate critical value
¢, we can use Boole's inequality and obtain

a=P|:maxT/. >C|H0:|
Fa
:P[Tl >c or T,>c.. or Tp>c|H0}
<37, P[T,>c|H, ] (2.10)

=Y, (-P[T <c|H,))

=p(-F,, ()

where F/wu(’) is the cumulative distribution function of chi-squared distribution with

n—1 degrees of freedom. As a result, we have
Eo (@ <1=5. (2.11)

Accordingly,



APPLYING A SIMPLE TEST PROCEDURE TO RECOGNIZE THE QUALITY VARIABLES
RESPONSIBLE FOR VARIANCE SHIFTS IN A MULTIVARIATE NORMAL PROCESS 23

cSZIZ_%(n—l)’ (2.12)

where )(12,%(”—1) is the 100x(1—ca/ p)™ percentile of chi-squared distribution with

n—1 degrees of freedom. Consequently, le_%("—l) is an upper bound for c¢. Since the upper

bound is easy to compute and provides a conservative result, it could be used as an
approximation to the critical value in the above test.

Simulated experiments are performed to assess whether the introduced approximation is
effective. To evaluate the accuracy of the approximation, under the null hypothesis, the Monte
Carlo estimate for P maxT > ;(1 . (n 1) | is computed and compared with the nominal level. Let
D = diag(\Jo) /a7 .. J o)) be a diagonal matrix, and g, be the in-control mean vector.
Since the random vector X, can be transformed using D(X;—u,) so that, when the process is
in control, the transformed data have a mean vector () and covariance matrix [O'S't], where
O-;s:17 S=1727'“7p; G;tzpst’ VS¢Z7 and p —COIT(
and X ;- AAs a consequence, without loss of generality, we assume that X,,X.,...X, are sampled

s X;) is the correlation of X
from a normal distribution N (0, ), where ¥ =[c.], o,=1, s=12,...p; O'; =p,
V s#¢t. In this study, p has been evaluated at seven different values: 2, 3, 4, 5, 6, 7, 8. In
addition, we conducted simulations with sample sizes of 5, 30, 50, 100, 200, and 300. As the
covariance matrix is negative definite for p<-0.2 as p 26, the density function does not exist,
we can not generate random vectors from such a multivariate normal distribution. We therefore
consider the case 0:-0.1, 0.0, 0.3, 0.5, 0.7, 0.9. From each given multivariate normal population,
we simulate 10,000 multivariate normal samples to determine the value of maxT . By
calculating the percent of 10,000 maxT 's that are greater than Z] a(’l 1), we can estimate

P[m;axT, > ll,%(n l)} Thus, a lower absolute deviation indicates better approx1mat10n performance.

For the various values of p and n, Fig. 1 plots the deviations against £ values separately.
According to Fig. 1, at a significance level of 0.05, about 70% and 50% of the absolute deviations
are lower than 0.0064 and 0.0036. At a significance level of 0.01, approximately 90% and 70%
of absolute deviations are lower than 0.0031 and 0.0016. Furthermore, 90% of the absolute
deviations are less than 0.0005, and 70% are lower than 0.0003, if the significance level is 0.001.
As a result, it may be adequate for most applications to use this approximation.
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2.2 A method for recognizing the quality variables responsible for variance shifts
Using the above method and the following test, it will be able to identify the main
contributors to the out-of-control signals:

Step I.  Set tto 1;

Step II. Let a*zta—l. (Type I error is maintained around the nominal level using the
+

Bonferroni method and the error spending approach. See, Hou et al. (2001));

.. 0 (0) (0) e
Step III. Utilize m?XY} to test H, :0), = O'l(l), Gy =0y 5.0, =0, at the ¢ significance
level;

Step IV. If the hypothesis in Step III is rejected, remove the variable with the highest test
value. To make it easier, consider excluding the pth variable. Return to Step II for
further testing the rest variables by setting ¢t =¢+1 and p=p—1;

Step V. If the hypothesis in Step III is not rejected, terminate and declare that none of the
rest variables are responsible for the variance shifts.

Tteratively continue to follow these steps until we are unable to reject the hypothesis for
only some variables. Thus, these variables are therefore not the source of process variance shifts,
while other variables are regarded as contributors.

3. Simulation Studies

To evaluate the usefulness of the method proposed above, we perform a series of simulation
experiments. Without loss of generality, we assume that initially, a multivariate process is in
control, and the observations are drawn from a multivariate normal distribution N(g,,%,),

where
0
0
ﬂOZ : (31)
0
and
L p p
5?0 52)
.1 op
p p 1

In addition, we assume that after some time, the covariance matrix changes from %, to
2, . Moreover, three out-of-control simulation scenarios are evaluated: (scenario 1) a variance
shift occurs at the first quality characteristic; (scenario 2) variance shifts occur at the first two
quality characteristics; and (scenario 3) variance shifts occur at the first three quality
characteristics. In scenario 1, four possible values of p are considered in this study, namely, 2, 3,
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5, and 7. The cases where p=>5 and p=7 are examined only in scenarios 2 and 3 as illustrations.
Following Cheng and Cheng (2008), the covariance matrixes for these three scenarios are:

(6> po - - pB

p0 1 p - p
i p 1 . i |, (scenario 1) (3.3)
: R )

P p - p 1

8> pd pb pb pb
pd> 6 pb pb pb
pd pd 1 p

Pl  pb
po pd p p

, (scenario 2) (3.4)

bS]
- X D

and

0> p& pd pb po
pd*> 6  pd pb pb
pd*> pd 6 pb pb|, (scenario 3) (3.5)
pd pd pd 1 p
Pl  pd pd p 1

where @ is the inflated ratio. Ten values of @ are taken into account, these are 1.1, 1.2,
1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, and 2.0. Seven values of £ are considered, and they are -0.1. 0,
0.1, 0.3, 0.5, 0.7, and 0.9. A sample size of 5, 30, 50, 100, 200, and 300 will be taken. We used
a significance level of 0.05. In this simulation experiment, we use the approximation presented
above to determine the critical value of the proposed method. In addition, we use the accurate
identification rate (AIR) to gauge the effectiveness of the introduced method. The AIR is defined
as the percentage of variables classified correctly as noncontributors or contributors. This study
conducted simulations under various parameter settings and found that under the same p, g,
n, and scenario, the AIRs corresponding to different correlation coefficients are almost the same.
It is found that the correlation coefficient has little effect on the AIR of the proposed procedure.
In all cases, the maximum difference in AIR among different correlation coefficients is only
approximately 0.0085. Therefore, this study only gives an illustrative example when the
correlation coefficient is 0.5. To explore how the proposed method performs when only one
quality characteristic is out of control, we explore scenario 1. Fig. 2 presents the results. In order
to examine the difference in the AIR performance of the proposed method in three different
scenarios, we explore the cases where p=>5 and p=7. Fig. 3 and 4 show the results.
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Fig. 2 to 4 show the effects of inflated ratio on AIR for various sample sizes. With an
increasing inflated ratio or sample size, it is visible that the AIR increases to 1. It is reasonable
to expect this. Furthermore, from Fig.3 and 4, it can be seen that the larger the number of out-
of-control variables, the larger the sample size required to achieve the same AIR. Hence, using
adequate sample sizes, it is evident that the introduced approach can appropriately determine
the contributors to process variance shifts. We also obtained similar results from our extensive
simulation studies.

4. An illustrative Example

The proposed method is demonstrated by a practical example discussed in Joshi et al. (1997)
and Huwang et al. (2007) regarding wafer production in the semiconductor industry. Three
critical dimension measurements of the die were taken at three different positions on each drawn
wafer from the 74 lots of wafers. For the convenience of explanation, let M;, Ms, and M;
represent the three corresponding measurements. According to Alt (1985), the in-control mean
vector is estimated as

3.135
4,=|3.108
3.118

In addition, the in-control and out-of-control covariance matrixes used in Alt (1985) are

0.0093 0.0036 0.0052
2,=/0.0036 0.0085 0.0034
0.0052 0.0034 0.0088

and

0.0186 0.0036 0.0052
%,=/0.0036 0.0170 0.0034 |,
0.0052 0.0034 0.0088

respectively. Obviously, the measurements M; and M, are the contributors to variance
shifts. Suppose the control chart triggers an out-of-control signal. As for now, the method
proposed is applicable to determine the quality variables responsible for variance shifts.

As a convenience, assuming »n =10 and based on the distribution N(#4,Z,) with 4, and
2, mentioned above, an illustrative data set is simulated. Ten observations simulated are
(3.2526, 3.1912, 3.2530), (3.1748, 3.1878, 3.2579), (3.0463, 3.1178, 2.9760), (2.8801, 2.7871,
2.9114), (2.9323, 2.9726, 3.1057), (3.0450, 3.4545, 2.9752), (3.3363, 3.0914, 3.0594), (3.2756,
3.1184, 3.1308), (3.2014, 3.0022, 3.1059), (3.0274, 3.0657, 3.2116). Using a significance level of
0.05 and applying the method introduced above, the contributors of variance shifts can be
determined. This analysis is summarized in Table 1. As can be seen in Table 1, the test statistic
m?'XT;' is greater than 22.18 at the first iteration, therefore we reject the null hypothesis. As M>
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has the highest test value, we assert that Mo contributes to the variance shifts. Removing the
second variable, set t=t+1=2, and p=p—1=2. Similarly, at the second iteration, m‘?XTj
also remains above 22.18, and M corresponds to the highest test value. Thus we reject the null
hypothesis and declare that M is the contributor. With the first variable excluded, and set
t=t+1=3, p=p-1=1. At the third iteration, the test statistic drops to 14.77, which is lower
than 21.03, so we do not reject the null hypothesis and stop the test procedure. We declare that
the remaining measurement M3 is not the contributor to the variance shift. The results presented
in this table demonstrate how the proposed method can easily and effectively detect the
contributors of variance shifts. Although this study uses the semiconductor industry as an
example to illustrate how to apply the proposed method, this method can also be applied to
other industries or other fields, such as automobile production line data discussed by Porzio and
Ragozini (2003), and healthcare data examined by Maboudou-Tchao and Diawara (2013).

Table 1 Illustration of the Proposed Test Procedure («=0.05)

Iteration Test statistic Critical value

" P T= (Tp---’Tp) max T Zz ) (n _ 1) Conclusion
; J -
J =
3 (22.64, 31.45, 14.77) 31.45 22.18 M is the contributor.
2 2 (22.64, 14.77) 22.64 22.18 M, is the contributor.
3 1 (14.77) 14.77 21.03 M is not the contributor.

5. Conclusion

It is vital for the process industry to quickly and accurately pinpoint the contributors of an
out-of-control process. While most established methods use machine learning techniques or
decomposition approaches to recognize the sources of process shifts, the present work proposes
to use a simple outlier testing procedure to determine the fault variables responsible for the
process variance shifts. A method for detecting outlying variance in multivariate normal
distributions is proposed. Moreover, an iterative test approach for recognizing the sources of
process variance shifts is developed. Results of simulations and a practical illustrative example
show that the approach proposed is easy to use and can yield satisfying results when identifying
the quality variables responsible for variance shifts in multivariate normal processes.

Multiple testing involves conducting more than one hypothesis test simultaneously. The
probability of incurring one or more type I errors (false positives) during multiple statistical
tests is known as the family-wise error rate. This study uses the Bonferroni method and error
spending approach to keep the overall family-wise error rate near our desired significance level,
reducing the risk of false positives in multiple tests. Nonetheless, the Bonferroni correction is
not the only technique for handling multiple tests. Other methods, such as the Sidak method
(Sidak, 1967), the Holm-Bonferroni method (Holm, 1979), and the Benjamini-Hochberg method
(Benjamini and Hochberg, 1995), may also be considered. Further research is needed to
determine which method is superior.
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In this study, Boole's inequality was used to devise an approximation for calculating the
critical value of the proposed test. It is found that the approximation performed well based on
our numerical results. For most applications, the approximation may suffice, but a sharper
inequality could improve it. Further study is needed on this possibility. Besides, as there are
other kinds of process shifts or multivariate processes, there is a need to investigate whether the
same approach is applicable to them as well.
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