
 

 

 
 

 

 

 

1. Introduction 

Different from the classical queuing model, discrete customers are replaced by continuous 
fluid in a fluid queuing model. Therefore, fluid queuing model has a wide range of applications 
in the current era of big data, such as network transmission(Stern & Elwalid, 1991), cloud 
logistics system (Latouche & Taylor, 2009) and management industry (Ahn & Ramaswami, 
2003).  

Combining queuing theory and game theory, the economic analysis of queuing model focus 
on the equilibrium balking strategy and social optimal joining strategy.  Customers (fluid) will 
get certain payoff after being served, and need to spend a certain cost during their sojourn 
period. The net benefit of a rational customer was regarded the criterion to judge whether to 
enter the buffer. Each customer only considers his own net benefit, regardless of the profit of 
others. Customers game each other, the optimal strategy of individual benefit may not be the 
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optimal strategy of social profit. Therefore, more and more scholars begin to analyze fluid queue 
from the perspective of economics. 

  Rajagopal et al. (1995) considered a stochastic fluid queuing model with infinite capacity, 
constant output rate and adjustable input rate, derived the social optimal joining threshold and 
the optimal charging strategy. Maglaras (2006) analyzed the fluid queuing model with dynamic 
pricing problem, and gave the equilibrium balking strategy and the social optimal entry strategy 
for different types of customers.  Kesselman and Leonardi (2012) studied a precise grouping 
fluid queuing model and gave the Nash equilibrium strategy for customers. Economou and 
Manou (2016) discussed the fluid queuing model with two service modes under the fully 
observable case, and equilibrium balking strategy for customers was investigated. Barron (2018) 
derived the social optimal threshold of the total storage level for a fluid queue. Kelly and 
Yudovina (2018) provided various high-frequency trading strategies in a fluid queuing model,  
and discussed the Nash equilibrium strategy among high-frequency traders when the continuous 
time market is frequently auctioned. Xu et al. (2021) studied the repairable fluid queuing model 
with threshold-controllable arrival rate under fully observable case and almost observable case, 
an exponential utility function of social benefit was constructed and  the individual equilibrium 
balking strategy was obtained. Wang and Xu (2021) studied a fluid queuing model with limited 
buffer capacity and adjustable service rate from the perspective of economics. Liu et al. (2020) 
discussed a fluid model with parallel customers and breakdowns, obtained the equilibrium 
individual balking strategy and the social optimal enter strategy. Wang and Xu (2024) 
investigated the equilibrium strategy in a fluid model with two types of parallel customers and 
delayed repair. 

The classical vacation policy means that the queuing system does not work during the 
vacation period, while the working vacation strategy means that the queuing system  does not 
stop service completely and works at a low speed. Zhang and Xu (2022) analyzed a vacation 
fluid queue with controllable fluid outflow rate from the view of economics. Xu and Wang (2021) 
conducted an economic analysis of the fluid queuing model with working vacation under the 
fully observable case and almost observable case. Wang and Xu (2018) introduced set-up time 
and working vacation policy into a fluid queue, and derived the social optimal threshold of the 
fluid model.   

Order picking is a crucial link in logistics systems, and the timeliness of product delivery 
has become increasingly important to modern enterprise. Warehousing operations have 
gradually evolved into order fulfillment centers (OFC), which focus on providing small-batch, 
multi-batch shipments to individual customers. Automated guided vehicles (AGVs) as a novel 
mode of goods transportation has greatly enhanced transporting efficiency. In the order picking 
system, once a customer places an order, the OFC promptly allocates the task to the warehouse. 
The AGVs within the warehouse transport shelves containing the desired items to the picking 
stations, where order pickers efficiently select the products based on the order information.  

A large number of orders enter the OFC continuously like the fluid, and the sorted goods 
are continuously sent out. Orders are categorized into two types, corresponding to ordinary 
goods and fragile goods respectively. Taking into account the risk of fragile items, orders for 
fragile items placed during work vacation period and vacation period will be reduced by 
probability. 
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Based on the above research and considering the working mode of AGVs, this paper 
constructs a two-stage vacation fluid queuing model with two types of parallel customers, 
develops solving method for average sojourn time and stationary distribution of fluid level, and 
derives the individual equilibrium balking strategy, and improves SOA algorithm to obtain 
optimal social benefit. The study extends the results of the existing literature, enriches the 
theoretical research framework of fluid models, and expands the application field of fluid model. 

The rest of this paper is organized as follows: Section 2 constructs a two-stage vacation 
fluid queuing model with two kinds of parallel customers. section 3 studies the equilibrium 
balking strategy of the fluid under the fully observable case. Section 4 derives an explicit 
expression for the stationary distribution of fluid level, and the average social profits. Section 5 
uses numerical analysis to demonstrate the influence of key parameters on social benefits, and 
SOA algorithm is designed to find the social optimal joining thresholds and the maximum social 
profit. Section 6 summarizes the content, and puts forward the prospect of the future research 
work. 

2. Model description and assumption 

In the two-stage vacation fluid queuing model with two types of parallel customers (fluid), 
the model assumptions are as follows:  

The buffer alternates between three system states, namely working period, working vacation 
period, and vacation period. The duration of these states follow exponential distributions with 
parameters , and , respectively. 

Two types of fluid independently flow into the buffer. The first type of fluid represents 
normal customers and has a constant inflow rate of . The inflow rate of the second type of 
fluid is ( ), but it flows into the buffer according to different probabilities and during 
the working vacation period and the vacation period respectively.  

During the working period, the buffer has an outflow rate of . After the working period, 
the buffer switches to the working vacation period, and its outflow rate decreases to . 
After the working vacation period, the buffer switches to the vacation period, during which the 
buffer does not work and there is no outflow. Once the vacation period is over, the buffer re-
enters the working period.  

Assume that the fluid level in the buffer at time t is denoted by , the state of the buffer 
at time t is denoted by , and represents the buffer stays in the working period, 
working vacation period, and vacation period, respectively. Then the net input rate structure of 
the buffer can be described as follows 

 

 

0q 1q 2q

1l
2l 1l¹ 1q 2q

bµ
( )v v bµ µ µ<

( )X t
( )I t ( ) 0,1,2I t =

( )
( ) ( )
( ) ( )
( ) ( )
( )

1 2

1 1 2

1 2 2

, 0, 0,

, 1, 0,

, 2, 0,

0, 0.

b

v

I t X t

q I t X tdX t
dt q I t X t

X t

l l µ

l l µ

l l

ì + - = >
ï

+ - = >ï
= í

+ = >ï
ï =î



 XIULI XU, LUJIE CHANG 

 

122 

On the other hand, based on the alternating renewal process, the steady-state probability 
distribution of the process can be obtained as follows 

, , . 

3. Individual equilibrium balking strategy 

In the fully observable case, customers have full knowledge of system information, including 
the state of the buffer and fluid level. Assume that type k fluid gains a reward of after service, 
and pays the cost of per unit time during the sojourn period. The fluid is willing to enter the 
buffer only if the net benefit after being served is positive. Assume that the fluid cannot exit 
before being served. Similarly, they cannot change their decision if they make a decision to refuse 
to enter the buffer. Because the factors that affect the benefit of fluid in real life are very complex, 
it is very difficult to discuss them directly when the fluid reaches the buffer, this paper mainly 
discusses the impact of sojourn time on the benefits of fluid, so we denoted the average benefit 
per unit time of type k fluid flowing into the buffer when  by 

                 (3.1) 

where represents the average sojourn time of type k fluid flowing into the buffer 
when . 

Assume that in order to ensure that the fluid is willing to 
flow into the buffer when the buffer is empty.  

Theorem 1. In the case of fully observable, the Nash equilibrium threshold for the two-
stage vacation fluid queue with two types parallel customers is . That is , when type 
k fluid reaches the system at time t and finds the system information , the fluid will choose 
to flow into the buffer if . Otherwise it will balk. These thresholds respectively 
are the unique solutions of the following equations 

 

 

 

where , , . 

Proof. Define that is the remaining time of the buffer in state after the fluid 
enters, then it follows an exponential distribution with parameter based on the memorylessness 
of exponential distribution. According to the conditional expectation formula, we obtain 
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               (3.2) 

              (3.3) 

Taking in (3.2) and  in (3.3), we get 

               (3.4) 

              (3.5) 

Multiplying both sides of (3.4) and (3.5) by and ， respectively, then 
differentiating with respect to x, we have 

                   (3.6) 

                    (3.7) 

Based on the boundary conditions , manipulating (3.6) and (3.7) ,we 
obtain 

 

 

From model assumption, we get 

                       (3.8) 

Substituting (3.4), (3.5) and (3.8) into (3.1), we obtain the Nash equilibrium thresholds for 
the fluid queuing model, then theorem 1 is proved. 

4. Social optimal strategy 

Customers often focus on maximizing their own benefit and don’t concern the profits of 
group society. The profits of the social group are not necessarily optimal when the benefits of 
each customer are optimal. If considering a service system from a social perspective, the 
objective becomes maximizing social welfare, which includes the benefit of all the customers. 
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4.1 The steady-state probability distribution of fluid levels 

Assuming all the type k fluid follows the social optimal strategy 
with model assumption conditions it is generally observed that , 

 because of the service rate on state 0 is higher than that on status 1 and 
2. May as well assume . Therefore, there are four possible cases for the 
thresholds and  

     

    

In the following, the stationary probability distribution of the fluid level in the buffer is 
discussed in case a). The other cases are not discussed in detail. 

Defining the joint probability distribution function of the fluid level in the buffer when it is 
in state i at time t as  

 

thus the steady-state distribution of the fluid level in the buffer at state i is  

 

Define as the net input rate of the fluid in state i ,then we have 

 

    

 

and denote , , . 

If all the fluid follows socially optimal strategies , under condition
, then the steady-state distribution of the fluid level 

can be discussed in four cases: (1)  (2)  (3)  (4)
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Theorem 2. when then 

         

 

 

The density functions are as follows 

 

The probability mass at the discontinuity points of the distribution function are given by 
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increases at rate until it reaches the maximum . The variation trend of the fluid 
level in the buffer at each state is shown in Figure 1. 

Considering the changes of the fluid level within a sufficiently small time interval, thus we 
have 

     (4.1)              

Divide both sides of each equation in (4.1) by ,and take the limit of to 0 obtain 

                           (4.2) 

In steady state, the joint probability distribution functions satisfy 

 

Manipulating (4.2), we establish a system of linear differential equations 

                             （4.3） 

with the boundary conditions . 

Combining the boundary conditions, we solve linear differential equations (4.3) to obtain 
the steady-state distribution of the fluid level, the probability density function, and the 
probability mass at the discontinuity points, then theorem 2 is proved. 

Similarly, according to the analysis method and steps of theorem 2, Based on Figures 2-4, 
we can obtain the following results for other three cases.  
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Figure 1 Trend of Fluid Level            Figure 2 Trend of Fluid Level 
            Changes in Case 1                      Changes in Case 2 

 

Figure 3 Trend of Fluid Level            Figure 4 Trend of Fluid Level 
            Changes in Case 3                      Changes in Case 4 
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The density functions are as follows 

 

The probability mass at the discontinuity points of the distribution function are given by 

 

Where , 
,  

, ,    
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Theorem 4. when  then 

 

 

 

The density functions are as follows 
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The probability mass at the discontinuity points of the distribution function are given by 

 

Where , 
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Theorem 5. when  then 

 

 

 

The density functions are as follows 

 

The probability mass at the discontinuity points of the distribution function are given by 
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Where
,  

, ,  

, , 

, , 

, . 

4.2 Average fluid level  

Denote the steady-state probability distribution of the fluid level in the buffer and the 
corresponding LST as follows 

 

In situation , according to theorem 2, we derive 
the steady-state probability distribution and average fluid level in the buffer for the following 
four cases. 

Case 1. when  the steady-state probability distribution of the fluid level is  
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The average value of the fluid level is 

  

Case 3. when  the steady-state probability distribution of the fluid level is 

 

where , . 

The corresponding LST is 

 

The average value of the fluid level is 

 

Case 4. when  the steady-state probability distribution of the fluid level is  

 

where , . 

The corresponding LST is 

 

The average value of the fluid level is 

 

4.3 Average social profits per unit time 

Assume that type k fluid follows the social optimal strategy  , 
the average social profits per unit time for the group society can be defined as 

                              (4.4) 

where represents the effective inflow rate of the type k fluid, and represents the 
average fluid level of the type k fluid. 
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Case 1. when  the effective inflow rates for two types of fluid are given by 

 

The average fluid level for two types of fluid respectively are 

, . 

Case 2. when  the effective inflow rates for two types of fluid are given by 

 

The average fluid level for two types of fluid respectively are 

, . 

Case 3. when  the effective inflow rates for two types of fluid are given by 

 

The average fluid level for two types of fluid respectively are 
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Case 4. when  the effective inflow rates for two types of fluid are given by 

 

The average fluid level for two types of fluid respectively are 

, . 

Substituting the expressions for and in four cases into (4.4) , we obtain the 
average social profits per unit time for the service system under the socially optimal strategy. 

4.4 The thresholds of social optimal strategy  

In this section, in order to achieve the maximum social benefit,  we will discuss the 
existence and non-uniqueness of the socially optimal thresholds in case 1 
when  The other three cases can be analyzed similarly.  

In case 1, the expression of the social profits function is dependent on thresholds 
. By taking the partial derivative of the social profits function with respect to
respectively and solving the resulting partial differential equation, we can 

obtain the following set of stationary points of the social profits function at state 0, 1, and 2. 
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varies with the service rate as depicted in Figure 5. The average fluid level decreases as the  
service rate  increases, and increases as the service rate  increases. 

Assigning values to the parameters,  

, the average fluid level changes as shown in the tr 6. has no significant effect on 
the average fluid level, but the fluid level tends to decrease as the  increases. 

5.2 Numerical simulation  

Due to the complexity of the expression for the social profits function, this section utilizes 
software to simulate the social benefit. Taking case 1 as example, by visualizing the simulated 
profits function, the impact of parameters on social benefit is discussed.  

Assuming that  

, the social profits varies 
with the service rate as depicted in Figure 7. In this case, the social profits decreases as the 
service rate increases during working periods.  

Assigning values to the parameters,  

, it is observed from Figure 8 that the social profits decreases as the working period 
rate and the working vacation rate increases. Therefore, it is advisable for system managers 
to consider reducing the rate of working period and the rate of working vacation to 
optimize the social profits. 

                 

Figure 5 Impact of on  in Case 1.  Figure 6 Impact of on  in Case 1.

               

Figure 7 Impact of  on Social               Figure 6 Impact of on Social 
Profits in Case 1.                                 Profits in Case 1. 

    

bµ vµ

1 2 1 230, 20, 1, 1, 0.8,  0.7, 0.8,R R C C a b g= = = = = = =

( ) ( ) ( ) ( ) ( )2 1 2 1 2 1 2 1 2 11, 5, 2, 0.6, 0.6, 4, 3, 1 5, 1 6, 2 7, 2 8, 0 9,b vq q x x x x xq l l µ µ= = = = = = = = = = = =
( )2 0 10x = 0q

1q

1 2 1 2 0 1 2 130, 20, 1, 0.8, 0.7, 0.8, 1, 3, 0.6,R R C C qa b g q q q= = = = = = = = = = =

( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2 1 20.6, 1 5, 1 6, 2 7, 2 8, 0 9, 0 10q x x x x x x= = = = = = =

vµ

1 2 1 230, 20, 1, 1, 0.8,  0.7, 0.8,R R C C a b g= = = = = = =

( ) ( ) ( ) ( ) ( )2 1 2 1 2 1 2 1 2 11, 5, 2, 0.6, 0.6, 4, 3, 1 5, 1 6, 2 7, 2 8, 0 9,b vq q x x x x xq l l µ µ= = = = = = = = = = = =
( )2 0 10x =

0q 1q
0q 1q

,v bµ µ ( )E X 0 1,q q ( )E X

,v bµ µ 0 1,q q



BEHAVIOR OPTIMIZATION OF TWO-STAGE VACATION FLUID QUEUE  
WITH TWO TYPES OF PARALLEL CUSTOMERS 

 

135 

5.3 Optimization algorithm  

Seagull Optimization Algorithm (SOA) is a new swarm intelligent optimization algorithm 
proposed in recent years. It iteratively searches for the optimal value by simulating the migration 
and foraging behavior of seagulls in nature. The algorithm has the advantages of strong 
adaptability, simple structure and easy implementation. Through experimental comparison, 
SOA is more competitive than other related optimization algorithms in terms of convergence 
and computational complexity. This section uses SOA to find an approximate value for the 
optimal social entry threshold. 

 Taking case 2 as an example, the specific algorithm for using SOA iteration to solve the 
social optimal entry threshold  and social optimal profits S is as follows. 

Step1：Define initial values for system parameters, seagull population  , maximum 
number of iterations, search space dimensions , search space upper and 
lower boundaries , control factors , spiral coefficients , and current 
number of iterations . 

Step2：Initialize seagull population location 

              for  

                   

              end 

Step3：Set the current optimal position as and calculate the fitness value 

               

               

Step4：Simulate seagull migration and foraging behavior to update seagull positions  

for  

                  

                  

                  

                  

                  

                 % inter random number , inter random number  

               end 

Step5：Calculate fitness value 

              for  

                   

              end 

( )2 0x

pop
iterMax dim

,ub lb cf ,u v
1t =

1:m pop=

( ) ;ml rand ub lb lb= - +

1l
*

1;l l=
*( )fitness S l=

1:m pop=

( );c
c

iter

tfA f
Max

= -

( ) ( ( )) ;c
s c m

iter

tfC m f l
Max

= -
* 2( ) 2( ) ;s mM m l l A rand= -

( ) ( ) ( ) ;s s sD m C m M m= +
3 *( )( ) cos sin ;wv

m sl D m ue w w w l= +

rand (0,1) w (0,2 )p

1:m pop=

( );m mS S l=
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Step6：Find the current optimal position  and fitness value 

             for  

                 if  

                  

                 

             end 

Step7：Update Iterations 

        

             if  

               return Step4; 

             end 

Step8：Output optimal position and fitness value. 

Assuming that , ,  

. Based on the SOA algorithm to conduct numerical experiments to obtain a 
social optimal threshold of 4.9 and a social optimal benefit of 357.5578. 

6. Conclusion 

This paper constructs a new type of vacation fluid queuing model and analyzes from the 
view of economics. The mean sojourn time and stationary distribution of fluid level is derived, 
then the individual equilibrium balking strategy and the average social benefit per unit time are 
obtained by solving the utility functions. Sensitivity analysis is presented to demonstrates the 
effect of parameters on the fluid level and average social benefit per unit time. SOA algorithms 
is designed to find optimal thresholds of social benefit. The results of this paper can be applied 
to logistics management of OFC for e-commerce enterprises. In this paper, the equilibrium 
analysis of the fluid model here is carried out only in the observable case, and the equilibrium 
and optimization in other cases can be further discussed in the future. 
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