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The main objective of this research is to ascertain the im-
pacts of reference price effects on the joint optimization of
pricing and inventory. Using dynamic programming, we
study a single-item, periodic-review finite horizon joint pric-
ing and inventory system with dual suppliers under reference
price effects. Hence, in our model, the demands in consec-
utive periods are designed to be independent and sensitive
random variables to the sales’ price and customer’s reference
price. The main results are that the optimal replenishment
policies for the reliable and unreliable supplier are the base-
stock policy and the reorder point policy, respectively, and
all the parameters of the optimal policy are reference-price-
dependent.

1. Introduction

Integrating decisions about pricing and inventory can significantly improve the prof-
its of firms. Hence, it becomes a major strategy of many firms such as Dell, Amazon,
FairMarket (see Feng [15]). In addition, in order to avoid the sales losses caused by the
uncertainty of supply and related costs such as procurement, maintaining two supply
sources that charge different unit costs and different reliabilities for one commodity is
common in the procurement practice. Studies have also shown that diversification is
beneficial to both the firm and its customers (see Zhou and Chao [39]). Hence, it is
interesting and necessary to investigate the joint pricing and inventory decisions with
dual supplies with different reliabilities.

The reference price, as the cognitive price of customers, was first derived from the
adaptation level (see Helson and Bevan [22]). Later, prospects theory (see Kahneman and
Tversky [25]) and behavioral sciences (see Kalyanaram and Winer [26]) systematically
elaborated on the reference price, and they indicated that customers would remember
past prices with repeated transactions and develop price expectations for commodities.
This expectation, which is captured by the reference price, acts as a benchmark against
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which customers compare the price of a commodity. If the current selling price is lower
(higher) than the reference price, customers see it as a gain (loss), and hence are more
likely (less inclined) to make the purchase. This phenomenon is usually called the refer-
ence price effect. Customers are called loss averse (loss neutral) if their demand is more
(as) responsive to customers’ perceived losses than (as) their perceived gains. Otherwise,
they are called loss/gain seeking. In practice, this reference price effect has an important
impact on demand and therefore becomes an indispensable part of firms’ decision-making.

Because of the significant effects of the reference price on customers’ purchasing be-
haviors, reference price effects have received a great deal of attention from practitioners
and researchers. Firms in many industries, such as electronics, clothing and other tidal
commodities, have been aware of the reference price effects and made appropriate pricing
strategies to take advantage of them in order to achieve success (see Mathies and Gud-
ergan [28]). There is a lot of research that studies the pricing decisions with reference
price effects. This line of research started in the 1990s. Krishnamurthi et al. [24] studied
the impacts of reference price effects on brand selection and purchase quantity, and show
that customers have the characteristics of brand loyalty under symmetrical reference
prices, while it does not appear that such characteristics exist under asymmetric refer-
ence price effects. Greenleaf [20] first analyzed the firm’s pricing strategy with reference
price effects and explained how the reference price effects affect the promotion decision
of a firm during a period. He concluded that firm’s pricing decision when considering
the reference price effects will increase the firm’s profits. Some recent works explore how
pricing strategies should account for the reference price effects. For example, see Chen
et al. [8], Chenavaz et al. [9], Fibich et al. [? ], Hu et al. [23], Nasiry and Popescu [29],
Wang et al. [35] and the references therein. Arslan and Kachani [2] and Mazumdar et
al. [27] provided reviews of a dynamic pricing model with reference price effects. How-
ever, the literature sparsely investigates the joint pricing and inventory strategies with
consideration of the reference price effects.

To the best of our knowledge, only a few papers have integrated reference price effects
into the pricing and inventory control model. This line of research started with Gimpl-
Heersink [18], who proved the optimality of the base-stock-list-price for the single-period
and two-period models when the customers are loss neutral. However, the optimality
of the base-stock-list-price is stricter for the multiperiod setting. Urban [34] analyzed a
single-period joint pricing and inventory model with symmetric and asymmetric reference
price effects and shows that the consideration of the reference price has a substantial
impact on the firm’s profitability. Taudes and Rudloff [33] provided an application of the
two-period model from Gimpl-Heersink [18] to electronic commodities. Güler et al. [21]
used the safety stock as a decision variable to characterize the steady state solution to the
problem when the planning horizon is infinite. Chen et al. [9] introduced a new concave
transform technique to ensure that the profit function is concave by using the preservation
property of supermodularity in parameter optimization problems with the nonlattice
structure proposed by Chen et al. [7], and then proved the optimality of the base-stock-
list-price strategy. Zhang et al. [38] studied the continuous time pricing and inventory
joint decision-making problem affected by asymmetric reference price effects. Cao and
Duan [3] studied the joint decision-making of continuous time pricing and inventory
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under the effects of stochastic reference price. Wang et al. [36] further considered the
multi-period pricing and inventory decision-making model of retailers under the impact
of reference price and consumers’ strategic behavior. For other related works in this
stream of research, interested readers may refer to the review by DeYong [11] and Ren
and Huang [31]. All these studies focus on the single-supplier and the supplier is generally
assumed to be reliable.

Another closely related stream of research is the multiperiod procurement models
from suppliers with random yields and the coordination of pricing and inventory decisions
with the absence of reference price effects. This line of work was initiated by Anupindi
and Akella [1], who analyzed a multiperiod model with two unreliable suppliers and
investigated the optimal inventory policy of the buyer. Recently, Federgruen and Yang
[13] studied a more general problem with multiple unreliable suppliers, and show that
the optimal procurement policy for each supplier is a threshold type. They also develop
procedures to identify the optimal set of suppliers and the order quantity allocated to
each supplier. Chen et al. [5] considered the joint pricing and inventory control problem
for a system with multiple random-yield suppliers. They show that the optimal inventory
replenishment policy for each supplier is in general not a reorder point policy, but rather
a near reorder point policy. Zhou and Chao [36] considered an inventory system with
regular and expedited supply modes with lead times of 1 and 0, respectively. They show
that the optimal inventory policy is determined by two state-independent thresholds,
one for each supply mode, and the optimal price follows a list-price policy. Gong et
al. [19] developed a joint pricing and inventory control problem that has a quick-response
supplier with a lead time of 0 and a regular supplier with a lead time of 1 that both suffer
disruption risks. They show that the replenishment policy for each supplier is a reorder
point policy and the optimal price is monotonic in the initial inventory level. Chao et
al. [4] studied a dual-supplier inventory system in which one supplier is reliable, and the
other supplier is not reliable and has a general random yield. They show that the optimal
replenishment policy for the reliable supplier is a base-stock policy, the replenishment
policy for the random-yield supplier is a reorder point policy, and the optimal pricing
policy is a list-price policy with markdowns. Chen and Tan [6] discussed the procurement
from multiple suppliers with uncertain capacities and analyze the optimal ordering policy
when one of the suppliers is reliable. Their analysis shows that having a reliable supplier
results in a relatively stable optimal ordering policy, despite the unreliability of the rest
of the suppliers. Niu et al. [30] further studied the pricing and inventory model of dual
channel retailers from the perspective of procurement interruption risk. Difrancesco et
al. [12] studied the buyer’s contract mechanism in the two-echelon supply chain system
under random demand, supply uncertainty and interruption risk, namely risk sharing
contract and repurchase contract. A more complete literature review of this line of
research is provided in a recent paper by Yao and Minner [37].

Our model differs from the aforementioned two streams of research with respect to
two aspects. First, our model integrates the pricing and inventory decisions with supply
uncertainty, i.e., we consider two supply sources: one reliable supplier and one unreliable
supplier with a random supply yield. The reliable supplier can fully deliver the firm’s
order in the period when it is placed with a more expensive unit ordering cost; mean-
while, the unreliable supplier can only deliver a random proportion of the firm’s order
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quantity in the period when it is placed, but with a less expensive unit cost. Second,
we consider the customers’ reference price effects. Specifically, we study a single-item,
periodic-review joint pricing and inventory system with reliable and random-yield sup-
pliers under reference price effects. The demands in consecutive periods are independent
and sensitive random variables to the price and reference price. In other words, the
demand distribution depends on the price charged for that period and the reference
price generated by customers in the same period. Unfilled demands are fully backlogged.
The purpose of this paper is to find the dynamic joint optimal policies that determine
the pricing and inventory replenishment in each period so that the total expected dis-
counted profits are maximized. To the best of our knowledge, the present work is the
first attempt to analyze the joint pricing and inventory control problem with reliable and
random-yield suppliers under reference price effects. The guarantee of the profit-to-go
function’s concavity and supermodularity, which is a critical technical problem, allows
us to analyze the optimal pricing and inventory strategies and the impacts of reference
price effects on optimal decisions. We show that the optimal replenishment policy for
the reliable supplier is a base-stock policy, the replenishment policy for the random-yield
supplier is a reorder point policy, and the optimal pricing policy is a list-price policy
with markdowns, and all the optimal policy parameters are reference-price-dependent.
The impacts of reference price effects on the inventory replenishment strategies and the
pricing decisions are also studied. We further study the operational impacts of adding
reference price effects by comparing the results with the model proposed by Chao et
al. [4], hereinafter referred to as CG model. All the above research extends the results
of the CG model to the reference price effects.

The remainder of this paper is organized as follows. We present the finite period
model with stochastic dynamic programming in Section 2, and characterize the optimal
policies in Section 3. Section 4 investigates the operational impacts from the perspective
of adding reference price effects. Some numerical analysis are represented in Section 5 to
verify our results. Section 6 provides some managerial insights and Section 7 concludes
our paper.

2. Model Description

We consider a single-item, periodic-review problem for a firm in a finite planning
horizon with T (1 ≤ T ≤ ∞) periods. The firm has two suppliers, which are referred to
as suppliers ℓ, ℓ = 1, 2. Supplier 1 is reliable and can fully deliver the firm’s order in
the period in which it is placed with a unit ordering cost of c1; meanwhile, supplier 2 is
unreliable and can only deliver a random proportion of the firm’s order in the period it is
placed, but with a lower unit cost of c2, i.e., c1 > c2 > 0. Let Lt(qt) denote the random
quantity the firm receives when it orders qt from supplier 2 in period t. We assume a
stochastically proportional yield model with

Lt(qt) = Θtqt, t = 1, 2, . . . , T,

where Θ1,Θ2, . . . ,ΘT are random variables with support [0, 1] and mean θt for period
t. In the following discussion, we assume that Θ1,Θ2, . . . ,ΘT are independent random
variables.
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The demand in period t, which is denoted by Dt is nonnegative and independent

random variables. Similar to Güler et al. [21], the demand Dt is given by

Dt(pt, rt, εt) = dt(pt, rt) + εt,

where dt(pt, rt) is the mean demand function that is a deterministic function of the unit

selling price pt and the reference price rt in period t. Dt(pt, rt, εt) is nonnegative and

follows a continuous probability distribution, and εt is a random variable with zero mean

and is independent of pt and rt. This demand function is very general and includes the

additive and multiplicative models as special cases.

The mean demand is dt(pt, rt) = µt(pt) + Rt(rt − pt, rt), where µt(pt) = dt(pt, pt) is

called the base demand and Rt(rt − pt, rt) = η+max{rt − pt, 0} + η− min{rt − pt, 0} is

called the reference price effects on demand (see Helson and Bevan [22]). The nonnegative

parameters η+ and η− measure the sensitivities of demand associated with the perceived

gains and losses, respectively. Demand is classified as loss averse, loss neutral, or loss/gain

seeking, depending on whether η+ ≤ η−, η+ = η− or η+ ≥ η−. For more information

about Rt(rt − pt, rt), we refer to Güler et al. [21] and the references therein.

We assume that the price in each period, pt is restricted to a bounded interval [p, p].

The reference price depends on past prices and the current price. A commonly used

model for the evolution of the reference price is the exponential smoothing model (Chen

et al. [8]; Gimpl-Heersink [18]; Güler et al. [21]):

rt+1 = αrt + (1− α)pt,

where α(0 ≤ α < 1) is the memory factor. The larger the memory factor is, the longer

the memory. If α is high, then customers have a long memory and the past price effect

is larger. If α is small, then the current price has a greater effect than the past on the

reference price. The initial reference price is given by rt ∈ [p, p], and thus all rt belong

to the interval. Moreover, we introduce the following structure on the mean demand.

Assumption 1. The mean demand dt(pt, rt) is concave, bounded, nonnegative and

continuous, and it is strictly decreasing in pt and increasing in rt for t = 1, 2, . . . , T .

It is worth mentioning that the existence of the mean demand functions that satisfy

Assumption 1 has been proved in Güler et al. [21] when customers are loss neutral or loss

averse and some examples are presented. Hence, this paper assumes that the customers

are loss neutral or loss averse. In addition, Assumption 1 implies that pt(dt, rt) is concave

in (dt, rt) (Proposition 1, Güler et al. [21]), where pt(dt, rt) is the inverse function of

the mean demand dt(pt, rt) for a given rt. Moreover, pt(dt, rt) is strictly decreasing in

dt and increasing in rt for t = 1, 2, . . . , T (Proposition 1, Güler et al. [21]). Hence,

determining the price is equivalent to determining the mean demand. In the discussion

below, without other specifications, we will focus on finding the optimal mean demand

dt for period t. Therefore, we assume that the feasible region of the mean demand in

period t is dt ∈ [dt, dt], where dt ≥ 0 and dt < +∞.

We summarize the notations that will be used in this paper as follows:
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xt = the initial inventory level before any decisions are made in period t,

yt = the inventory level after placing the order from supplier 1 in period t,

qt = the ordering quantity from supplier 2 in period t,

ht = the unit holding cost in period t,

bt = the unit backorder penalty cost in period t, and

γ = the discount factor, 0 ≤ γ < 1.

At the end of each period after demand is realized, the remaining inventory is carried
over to the next period and incurs holding costs, while unsatisfied demand is backlogged
and incurs shortage costs. Let Gt(z) be the inventory holding/backlogging costs when
the ending inventory level is z in period t. Then, the expected holding/backlogged costs
can be written as

Gt(z) = htE[max{z − εt, 0}] + btE[max{εt − zt, 0}],

and we assume that Gt(z) is convex in z.
Given the initial inventory and the reference price in each period where t = 1, 2, . . . , T ,

this problem can then be formulated as a dynamic programming and the Bellman equa-
tion for this problem is

Vt(xt, rt) = max
yt≥xt,qt≥0

dt≤dt≤dt

{Rt(dt, rt)− c1(yt − xt)− c2θtqt − E[Gt(yt − dt +Θtqt − εt]

+ γEVt+1(yt − dt +Θtqt − εt, αrt + (1− α)pt(dt, rt))}. (2.1)

For convenience, we denote

Jt(yt, dt, qt, rt) =Rt(dt, rt)− c1yt − c2θ1qt − E[Gt(yt − dt +Θtqt − εt)]

+ γEVt+1(yt − dt +Θtqt − εt, αrt + (1− α)pt(dt, rt))}, (2.2)

and then (2.1) becomes

Vt(xt, rt) = max
yt≥xt,qt≥0

dt≤dt≤dt

Jt(yt, dt, qt, rt) + c1xt, (2.3)

where Vt is the profit-to-go function, Jt is the value function of period t, and E denotes
the expectation operator. The terminal value is given by VT+1(xT+1, rT+1) = 0.

Furthermore, we make the following assumption.

Assumption 2. The inverse function pt(dt, rt) of the mean demand dt(pt, rt) is super-

modular in (dt, rt) and the revenue function dt · pt(dt, rt) is joint concave in (dt, rt).

Under Assumption 2, the revenue function dt · pt(dt, rt) is supermodular in (dt, rt)
according to Theorem 6 in Güler et al. [21].
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3. Optimal Policy and Its Analysis

In this section, we characterize the firm’s optimal ordering and pricing strategies.
We first need the concavity of Jt and Vt. Hence, there exists a unique optimal decision
in each period for a given xt and rt.

Lemma 1. For t = 1, 2, . . . , T , we have

(i) Vt(xt, rt) is decreasing in xt and increasing in rt,

(ii) Jt(yt, dt.qt, rt) is joint concave in (yt, dt, qt, rt), and

(iii) V (xt, rt) is joint concave in (xt, rt).

The conclusions in Lemma 1 are similar to the relevant results of regular replenish-
ment literature [8] and [21], which reflects the intuition of myopic retailers, that is, if
consumers have higher expectations for the reference price, this higher expectation will
stimulate market demand, retailers focusing on single-period revenue will order more
goods through regular replenishment to increase their inventory level. However, this
single-period replenishment mode often increases the remaining inventory in the current
period due to the excessive order quantity, and the backlog of these remaining inventory
to the next period will produce higher inventory costs. Therefore, the importance of sup-
ply flexibility is highlighted. Supported by the concavity theory of Lemma 1, it not only
demonstrates the existence of the periodic optimal solution of dynamic programming
problem (2.1), but also lays a theoretical foundation for further analyzing the retailer’s
optimal pricing and inventory strategy under the dual replenishment mode.

For t = 1, 2, . . . , T , we define

d∗t (rt) = arg max
dt≤dt≤dt

{pt(dt, rt) · dt − c1dt}, (3.1)

and we characterize the firm’s optimal pricing and ordering policies in the following
theorem.

Theorem 1. For t = 1, 2, . . . , T , the firm’s optimal policies for period t are characterized

by two critical numbers z∗t,1(rt) and ξ∗t,2(rt), and a list price p∗t (for an optimal average

demand d∗t as p∗t = pt(d
∗
t )) as follows.

(a) The optimal ordering policy from supplier 1 is a base-stock policy with the inventory

level of z∗t,1(rt) + d∗t (rt), i.e.,

y∗t (xt, rt) = max{z∗t,1(rt) + d∗t (rt), xt}.

(b) The optimal ordering policy from supplier 2 is a threshold policy with the inventory
level of ξ∗t,2(xr, rt), where ξ∗t,2(xr, rt) ≥ z∗t,1(rt) + d∗t (rt), such that if xt < ξ∗t,2(xt, rt),
then the firm orders a positive quantity from supplier 2 and the ordering quantity
q∗t (xt, rt) decreases with the starting inventory level; otherwise, the firm orders noth-
ing from supplier 2.

(c) The optimal pricing policy is a list-price policy with markdowns. When xt ≤ z∗t,1(rt)+
d∗t (rt), d

∗
t (xt, rt) = d∗t (tt) and p∗t (xt, rt) = pt(d

∗
t (rt)); and when xt > z∗t,1(rt) + d∗t (rt),

p∗t (xt, rt) is a decreasing function of xt, and p∗t (xt, rt) ≤ pt(d
∗
t (rt)).
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Theorem 1 illustrates that the state space of the inventory level at the beginning
of period t is divided into three intervals. If xt > ξ∗t,2(xr, rt) then it is optimal to
order nothing from either supplier. If xt ≤ ξ∗t,2(xr, rt) then it depends on whether or not
xt ≤ z∗t,1(rt)+d∗t (rt). In the first case, as the inventory level after ordering from supplier 1
is z∗t,1(rt)+d∗t (rt) which is dependent on the reference price rt, the ordering quantity from
supplier 2 is also dependent on the reference price rt. Consequently, in this case, there
is a reference-price-dependent order-up-to level for supplier 1 and the reference-price-
dependent ordering quantity for supplier 2. If, however, z∗t,1(rt)+d∗t (rt) < xt < ξ∗t,2(xt, rt),
then the firm only orders from supplier 2 and the order quantity is a decreasing function
of xt.

To analyze the reference price effects on the pricing and inventory policies, we need
the following lemma.

Lemma 2. For t = 1, 2, . . . , T , Vt(xt, rt) is supermodular in (xt, rt).

Corollary 1. For t = 1, 2, . . . , T , we have

(i) Jt(yt, dt, qt, rt) is supermodular in (yt, rt),

(ii) Jt(yt, dt, qt, rt) is supermodular in (dt, rt), and

(iii) Jt(yt, dt, qt, rt) is supermodular in (qt, rt).

Based on this, we can characterize the reference price effects on the optimal inventory
replenishment and pricing policies via the following theorem.

Theorem 2. For t = 1, 2, . . . , T , we have

(i) The optimal inventory level y∗t from supplier 1 is increasing in rt.

(ii) The optimal ordering quantity q∗t from supplier 2 is increasing in rt.

(iii) The optimal mean demand d∗t is increasing in rt.

(iv) The price p∗t is increasing in rt, and

(v) The optimal profits V ∗
t (xr, rt) are increasing in rt.

The implied practical significance of Theorem 2 is as follows. With the increase of
consumer reference price, consumers’ valuation of the goods will also increase, which will
stimulate their purchase desire and increase the potential market demand. The increase
of consumers’ valuation will enable retailers to increase the sales. At the same time, the
increase of market demand will increase the order quantity of retailers, including both
supplier 1 and supplier 2. Although its cost is higher from supplier 1, retailers make up
for the loss of shortage as much as possible by increasing the order quantity. In view of
the positive impact of consumer reference prices on the overall market demand, retailers
will still increase their orders in the face of large market demand.

4. Operational Impact of Reference Price

Since the impact of supply diversification has been discussed in Chao et al. [4],
we mainly analyze the operational impacts from the perspective of the reference price
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effects by comparing our model with the CG model. Although the CG model considers

dual suppliers, one is reliable and the other is unreliable, it doesnt take the reference
price effects into consideration. To distinguish the CG model from ours, we use the

superscript c to signify the notation for the CG model. The following is the main results
on the impact of adding reference price effects.

Theorem 3. When rt > pt, after the reference price effects are considered, the optimal

profit-to-go function and optimal policy parameters, for t = 1, 2, . . . , T , satisfy

(i) V ∗
t (xt, rt) ≥ V c∗

t (xt);

(ii) y∗t (xt, rt) ≥ yc
∗

t (xt);

(iii) q∗t (xt, rt) ≥ qc
∗

t (xt);

(iv) d∗t (xt, rt) ≥ dc
∗

t (xt); and

(v) p∗t (xt, rt) ≥ pc
∗

t (xt).

Otherwise, the above conclusions are opposite.

This theorem can be intuitively illustrated as follows. Part (i) states that when more
consideration is given to the customers’ behaviors, the firm can only do better, and thus

its maximum profits will not decrease. Parts (ii), (iii), (iv) and (v) indicate that with
the increase of customers’ reference price, the optimal mean demand will increase and
the optimal price will rise as well. In addition, considering the lead time for regular

replenishment and the incremental demand under the reference price effects, the firm
orders more product using expedited and regular supply to raise the inventory level to

meet the customers’ needs as much as possible.

5. Numerical Analysis

In this section, we present several numerical experiments to illustrate the impacts
of reference price on the optimal policy parameters, including the optimal price p∗t , the

optimal inventory level y∗t after placing the order from supplier 1, the ordering quantity q∗t
from supplier 2 and the optimal profit V ∗

t . Besides, we analyze the operational impacts

on firm’s profit by adding reference price effects via comparing with CG model. All
experiments below are performed in MATLAB R2014b on a laptop with an Intel(R)
Core (TM) i5-7200U central processing unit CPU (2.50 GHz, 2.70GHz) and 8.0 GB of

RAM running 64-bit Windows 10 Enterprise.
Consider a system with planning horizon T = 4. We perform the numerical sim-

ulations with the following basic parameter values: c1 = 18, c2 = 15, η+ = 0.3,
η− = 0.5, γ = 0.95. The mean demand function is given by d(pt, rt) = 200 − 2pt +

1.5max{rt − pt, 0} + 2.5min{pt − rt, 0}, the inventory holding or backlogged cost is
Gt(z) = htE[max{z− εt, 0}] + btE[max{εt − z, 0}] with ht = 2, bt = 20 and εt ∼ Uniform
[−1, 1].

We first analyze the impact of the memory factor α on the optimal price p∗t , the
optimal inventory level y∗t after placing the order from supplier 1, the optimal ordering

quantity q∗t from supplier 2 and the optimal profit V ∗
t . We report the results for α = 0.3,
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0.5, 0.7, 0.9. The corresponding results are shown in Figure 1 to Figure 4. It is shown

from Figures 1-4 that the optimal price p∗t , the optimal inventory level y∗t after placing the

order from supplier 1, the optimal ordering quantity q∗t from supplier 2 and the optimal

profit V ∗
t are increasing in the reference price r, which is consistent with Theorem 2.

Furthermore, the optimal price p∗t , the optimal inventory level y∗t after placing the order

from supplier 1, the optimal ordering quantity q∗t from supplier 2 and the optimal profit

V ∗
t are decreasing in the memory factor α. This indicates that the memory factor α has

a negative impact on these optimal variables. Figures 1-4 suggest that with the increase

of memory factor α, i.e., the customers’ ability to remember past prices becomes weaker,

they adapt to the new price at a lower rate and less loyalty, then the firm should decrease

its sales price while reducing its order quantity from both supplier 1 and 2. This will

inevitably affect the firm’s profits.

Figure 1: The impact of memory factor α on the optimal price p∗
t
.

Next, we analyze the impact of the reference price effect coefficient η on the optimal

price p∗t , the optimal inventory level y∗t after placing the order from supplier 1, the optimal

ordering quantity q∗t from supplier 2 and the optimal profit V ∗
t . We report the results

for η = 0.3, 0.5, 0.7, 0.9. The corresponding results are shown in Figure 5 to Figure 8. It

is shown from Figures 5-8 that the optimal price p∗t , the optimal inventory level y∗t after

placing the order from supplier 1, the optimal ordering quantity q∗t from supplier 2 and

the optimal profit V ∗
t are decreasing in reference price effect coefficient η when rt < pt

while increasing in reference price effect coefficient η when rt > pt, which is consistent

with Theorem 3. This indicates that the reference price effect coefficient η has a negative
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Figure 2: The impact of memory factor α on the optimal inventory level y∗
t
after placing the

order from supplier 1.

Figure 3: The impact of memory factor α on the optimal ordering quantity q∗
t
from supplier 2.
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Figure 4: The impact of memory factor α on the the optimal profit V ∗

t
.

impact on these optimal strategy parameters when rt < pt while has a positive impact on
these optimal strategy parameters when rt > pt. Figures 5-8 suggest that when rt < pt,
with the increase of reference price effect coefficient η, i.e., consumers are more sensitive
to the difference between the reference price and the actual sales price, so they are more
reluctant to buy, then the firm should decrease its sales price while reducing its order
quantity from both supplier 1 and 2. This will inevitably affect the firm’s profits. When
rt > pt, the opposite is true, i.e., consumers will think that they have earned it and will
be more willing to buy. The firm should increase its sales price while increasing its order
quantity from both supplier 1 and 2 to gain more profits.
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Figure 5: The impact of reference price effect coefficient η on the optimal price p∗
t
.

Figure 6: The impact of reference price effect coefficient η on the optimal inventory level y∗
t
after

placing the order from supplier 1.



142 HUI-MING XU, YUAN LI AND YU-MEI HOU

Figure 7: The impact of reference price effect coefficient η on the optimal ordering quantity q∗
t

from supplier 2.

Figure 8: The impact of reference price effect coefficient η on the the optimal profit V ∗

t
.
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6. Managerial Insights

In this section, we provide some insights for management practice, which can be
adopted by firms to formulate their pricing and inventory strategies with a reliable sup-
plier and an unreliable supplier under the reference price effects.

(1) When the reference price effects is considered, customers’ ability to remember past
prices has a significant effect on managing the optimal pricing and inventory decisions.
As memory factor α increases, customers adapt to the new price information at a
lower rate and become less loyal to the commodity. At this time, the firm should
apply a low sales price to achieve a positive reference price effects. At the same time,
the inventory level for both supplier 1 and supplier 2 should also be reduced so as to
reduce the holding cost caused by demand uncertainty.

(2) The reference price effect coefficient η has a negative impact on optimal price, optimal
inventory level and profits when rt < pt while has a positive impact on these optimal
strategy parameters when rt > pt. When rt < pt, with the increase of reference price
effect coefficient η, i.e., consumers are more sensitive to the difference between the
reference price and the actual sales price, so they are more reluctant to buy, then
the firm should apply a low sales price while reducing its order quantity from both
supplier 1 and 2. When rt > pt, the opposite is true, i.e., consumers will think that
they have earned it and will be more willing to buy. The firm should apply a high
sales price while increasing its order quantity from both supplier 1 and 2 to gain
more profits.

Through the discussion of this paper, it can be seen that the consumers’ reference
price effects have great impacts on the pricing and inventory strategies of retailers. The
main task of firms is to increase the consumers’ reference price, improve the consumers’
valuation of the commodities, and then improve their satisfaction and loyalty to the
commodities, which in turn increases the revenue.

7. Conclusions

Our research complements the existing research stream in coordinating pricing and
inventory replenishment decisions from two aspects. On the one hand, we consider in-
ventory planning decisions for dual supply sources, i.e., one reliable and one unreliable
supplier with random supply yields. On the other hand, we consider the impact of the
customers’ behaviors (i.e., customers’ reference price) on the joint pricing and inventory
replenishment decision. We study a single-item, periodic-review joint pricing and inven-
tory system with reliable and random-yield suppliers under reference price effects. The
demands in consecutive periods are independent and sensitive random variables to the
price and reference price. Unfilled demands are fully backlogged. We show that the
optimal replenishment policy for the reliable supplier is a base-stock policy, the replen-
ishment policy for the random yield supplier is a reorder point policy, and the optimal
pricing policy is a list-price policy with markdowns, and all the optimal policy param-
eters are reference-price-dependent. The impacts of the reference price effects on the
inventory replenishment strategies and the pricing decisions are also studied. We further
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study the operational impacts of adding reference price effects by comparing our model
with the CG model. All the above research extends the results of the CG model to the
reference price effects.

Though this paper has identified the effects of the reference price on dynamic pricing
and ordering decisions with random yields, there are still some shortcomings that can
be investigated in the future. First, this paper analyzes the pricing and order flexibility
decisions of a single firm under reference price effects, and does not assess the influence of
reference price effects on suppliers. An interesting future research topic is to examine the
pricing and inventory decisions for suppliers and to design an appropriate coordination
mechanism so that a win-win outcome for both parties can be obtained. Second, in our
study, the customers’ reference price can be observed by firms. However, the information
on the customers’ reference price is difficult to get in reality. Thus, demand learning can
be incorporated into formulating pricing and inventory strategies in the presence of the
reference price effects.
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Appendix

Proof of Lemma 1. (i) The monotonicity of Vt(xt, rt) in xt is because Jt(yt, dt, qt, rt)
is independent of xt and the feasible set {(yt, dt, qt, rt) | yt ≥ xt, dt ≤ dt ≤ dt, qt ≥ 0}
shrinks as xt increases. The monotonicity of Vt(xt, rt) in rt is similar to that of Theorem
1 in Güler et al. [21].

Next, we prove (ii) and (iii) by induction. Starting from t = T it is obvious that
VT+1(xT+1, rT+1) = 0 is concave, and then (iii) is true. For (ii), since GT (·) is a convex
function and yT − dT +ΘT qT is a linear combination of yT , dT , qT for any fixed ΘT , then
GT (yT − dT + ΘT qT − εT ) is joint convex in (yT , dT , qT ) for any fixed ΘT . Thus, each
term in (2.2) is concave and its concavity is preserved by maximization. Therefore, (ii)
holds for t = T . Next, suppose that (ii) and (iii) are valid for t = k + 1. Each term in
(2.2) is concave except for Vk+1(yk−dk +Θkqk− εk, αrk +(1−α)pk(dk, rk)) and we thus
need the concavity of Vk+1(yk−dk+Θkqk− εk, αrk +(1−α)pk(dk, rk)) in (yk, dk, qk, rk).
By defining τ̃(yk, dk, qk, εk) and r̃(dk, rk) as

τ̃(yk, dk, qk, εk) = yk − dk +Θkqk − εk, r̃(dk, rk) = αrk + (1− α)pk(dk, rk),

the following holds for any pair (y1k, y
2
k), (d

1
k, d

2
k), (q

1
k, q

2
k) and (r1k, r

2
k):

τ̃
(y1k + y2k

2
,
d1k + d2k

2
,
q1k + q2k

2
, εk

)

=
y1k + y2k

2
−

d1k + d2k
2

+ Θk

q1k + q2k
2

− εk
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=
1

2
(y1k − d1k +Θkq

1
k − εk) +

1

2
(y2k − d2k +Θkq

2
k − εk),

r̃
(d1k + d2k

2
,
r1k + r2k

2

)

≥
1

2
r̃(d1k, r

1
k) +

1

2
r̃(d2k, r

2
k).

Since pk(dk, rk) is concave in (dk, rk) according to Assumption 1. Thus, we obtain

Vk+1

[

τ̃
(y1k + y2k

2
,
d1k + d2k

2
,
q1k + q2k

2
, εk

)

, r̃
(d1k + d2k

2
,
r1k + r2k

2

)]

≥Vk+1

[

τ̃
(y1k + y2k

2
,
d1k + d2k

2
,
q1k + q2k

2
, εk

)

,
1

2
r̃(d1k, r

1
k) +

1

2
r̃(d2k, r

2
k)
]

=Vk+1

[1

2
τ̃(y1k−d1k +Θkq

1
k−εk)+

1

2
τ̃(y2k−d2k +Θkq

2
k−εk),

1

2
r̃(d1k, r

1
k)+

1

2
r̃(d2k, r

2
k)
]

≥
1

2
Vk+1

[

τ̃
(

y1k, d
1
k, q

1
k, εk), r̃(d

1
k, r

1
k)
]

+
1

2
Vk+1

[

τ̃
(

y2k, d
2
k, q

2
k, εk), r̃(d

2
k, r

2
k)
]

,

where the first and second inequalities follow from (i) and the induction assumption,
respectively. We get the concavity of Vk+1(yk − dk +Θkqk − εk, αrk + (1− α)pk(dk, rk))
in (yt, dt, qt, rt). Then, Jk(yk, dk, qk, rk) is joint concave in (yk, dk, qk, rk). Therefore,
Vk(xk, rk) is joint concave in (xk, rk). We complete the proof. ���

Proof of Theorem 1. We first prove the results on y∗t (xt, rt) and p∗t (xt, rt). For
convenience, we define

Jt(zt, qt, pt, rt) = − c2θtqt − E[Gt(zt +Θtqt − εt)]

+ γE[Vt+1(zt +Θtqt − εt, αrt + (1− α))pt],

where zt = yt − dt. The convexity of Gt(·) follows from Lemma 1. This, along with that
the support of Θt is [0, 1], it can be easily verified that Jt(zt, qt, pt, rt) is joint convex and
submodular in (zt, qt). In addition, the optimal equation (2.1) can be rewritten as

Vt(xt, rt) = max
dt≤dt≤dt

{

Rt(dt, rt)− c1dt + max
zt≥xt−dt

{

− c1zt + max
qt≥0,p

t
≤pt≤pt

Jt(zt, qt, pt, rt)
}}

+ c1xt. (A.1)

Then, it follows that −c1zt+ max
qt≥0,p

t
≤pt≤pt

Jt(zt, qt, pt, rt) is concave in zt, max
zt≥xt−dt

{

−

c1zt + max
qt≥0,p

t
≤pt≤pt

Jt(zt, qt, pt, rt)
}

is concave in (xt − dt) and the maximand in (3.1) is

supermodular in (xt, dt). Then, it follows from (A.1) and Theorem 2.2.8 in Simchi-Levi
et al. [32] that d∗t (xt, rt) is increasing in xt. In addition, we define

z∗t,1(rt) = argmax
zt

{

− c1zt + max
qt≥0,p

t
≤pt≤pt

Jt(zt, qt, pt, rt)
}

.

Then, max
zt≥xt−dt

{

− c1zt + max
qt≥0,p

t
≤pt≤pt

Jt(zt, qt, pt, rt)
}

is increasing in dt and equals

−c1z
∗
t,1(rt) + max

qt≥0,p
t
≤pt≤pt

Jt(z
∗
t,1(rt), qt, pt, rt) when dt ≥ xt − z∗t,1(rt). Hence, accord-

ing to the definition of d∗t (rt) in (3.1), it is easy to verify that d∗t (xt, rt) = d∗t (rt) and
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p∗t (rt) = pt(d
∗
t (rt)) when xt ≤ z∗t,1(xt) + d∗t (rt) and q∗t (xt, rt) = max

zt≥xt−dt

{

− c1zt +

max
qt≥0,p

t
≤pt≤pt

Jt(zt, qt, pt, rt)
}

from (A.1). Meanwhile, when xt > z∗t,1(rt)+d∗t (rt), d
∗
t (rt) ≤

d∗t (xt, rt) ≤ xt − z∗t,1(rt) and so y∗t (xt, rt) = xt. Therefore, p∗t (xr, rt) = p∗t (rt) when
xt ≤ z∗t,1(rt) + d∗t (rt); and when xt > z∗t,1(rt) + d∗t (rt), since d∗t (xt, rt) is increasing in xt,
p∗1(xt, rt) = pt(d

∗
t (xt, rt)) is a decreasing function of xt, where p∗t (xt, rt) ≤ p∗t (rt).

We next prove that q∗t (xt, rt) is decreasing in xt. We define

Jt(wt, qt, dt, pt, rt) = − c2θtqt − E[Gt(wt − dt − εt)]

+ γE[Vt+1(wt − dt − εt, αrt + (1− α)pt],

where wt = yt + Θtqt. The convexity of Gt(·) follows from Lemma 1, and we note
that the support of Θt is [0, 1]. Thus, it can be easily verified that Jt(wt, qt, dt, pt, rt) is
joint convex and submodular in (wt, qt). In addition, the optimal equation (2.1) can be
rewritten as

Vt(xt, rt) = max
dt≤dt≤dt

{

Rt(dt, rt)−c1dt+ max
wt≥xt+Θtqt

{

−c1zt+ max
qt≥0,p

t
≤pt≤pt

Jt(wt, qt, dt, pt, rt)
}}

+ c1x. (A.2)

Then, it follows from the concavity of −c1zt+ max
qt≥0,p

t
≤pt≤pt

Jt(zt, qt, pt, rt) in wt, then

max
zt≥xt−dt

{

−c1zt+ max
qt≥0,p

t
≤pt≤pt

Jt(zt, qt, pt, rt)
}

is concave in (xt+Θtqt), and the maximand

in in (A.2) is submodular in (xt, dt). Then, it follows from (A.1) and Theorem 2.2.8 in
Simchi-Levi et al. [32] that q∗t (xt, rt) is decreasing in xt.

Finally, we define ξ∗t,2(xt, rt) = inf{xt | xt ≥ z∗t,1(rt) + d∗t (rt), q
∗
t (xt, rt) = 0}. Then,

we clearly have ξ∗t,2(xt, rt) ≥ z∗t,1(rt) + d∗t (rt), and q∗t (xt, rt) = 0 when xt ≥ ξ∗t,2(xt, rt).
The proof is complete. ���

Proof of Lemma 2. We prove this lemma by induction. Starting from t = T , it is
obvious that VT+1(xT+1, rT+1) = 0 is supermodular in (xT , rT ). Thus, Jt(yT , dT , qT , rT )
is supermodular in (xT , rT ) since the first four terms in Jt(yT , dT , qT , rT ) are independent
of xT . Then, the maximization that preserves the supermodularity yields the supermod-
ularity of VT (xT , rT ) in (xT , rT ).

Assume that the result holds for t = k+1. Next, we need to show that the result is
still valid for t = k. Since Jk(yk, dk, qk, rk) is independent of xk, we only need to prove the
supermodularity of Jk(yk, dk, qk, rk) in (yk, rk), (dk, rk) and (qk, rk), which is equivalent
to the supermodularity of Jk(yk, dk, qk, rk) in (yk, xk, rk), (dk, xk, rk) and (qk, xk, rk).

(i) We prove the supermodularity of Jk(yk, dk, qk, rk) in (yk, rk). The terms in
Jk(yk, dk, qk, rk) either depend on yk or rk or are constants with respect to yk and
rk except for the last two terms. Therefore, it suffices to show the submodularity of
Gk(yk − dk + Θkqk − εk) in (yk, rk) and the supermodularity of Vk+1(yk − dk + Θkqk −
εk, αrk + (1− α)pk) in (yk, rk).
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First, we prove the submodularity of Gk(yk − dk + Θkqk − εk) in (yk, rk). For any

pair (y1k, y
2
k) and (r1k, r

2
k) with y1k > y2k and r1k > r2k, let

τ1 = y1k − dk(pk, r
1
k) + Θkqk − εk, τ2 = y1k − dk(pk, r

2
k) + Θkqk − εk,

τ3 = y2k − dk(pk, r
1
k) + Θkqk − εk, and τ4 = y2k − dk(pk, r

2
k) + Θkqk − εk.

According to the monotonicity of the mean demand function dk, we have τ3 < τ4.

Thus, according to the concavity of Gk, we have

Gk(τ1)−Gk(τ3) =Gk(τ3 + (yE1 − yE2 ))−Gk(τ3)

≤Gk(τ4 + (yE1 − yE2 ))−Gk(τ4)

=Gk(τ2)−Gk(τ4),

which implies that Gk(y
1
k − dk(pk, rk)− εk)−Gk(y

2
k − dk(pk, rk)− εk) is decreasing in rk.

Therefore, Gk(yk−dk+Θkqk−εk) is submodular in (yk, rk), and then −Gk(yk−dk+Θkqk−
εk) is supermodular in (yk, rk). This proves the supermodularity of Jk(yk, dk, qk, rk) in
(yk, rk).

Second, we prove the supermodularity of Vk+1(yk − dk +Θkqk − εk, αrk + (1−α)pk)

in (yk, rk).
Consider the arbitrary pair (y1k, y

2
k) and (r1k, r

2
k) with y1k > y2k and r1k > r2k. We fix εk

and let

(τ1, ξ1) = (y1k − dk(pk, r
1
k)− εk, ξ1), (τ2, ξ2) = (y1k − dk(pk, r

2
k)− εk, ξ2),

(τ3, ξ1) = (y2k − dk(pk, r
1
k)− εk, ξ1), and (τ4, ξ2) = (y2k − dk(pk, r

2
k)− εk, ξ2),

where ξ1 = αr1k + (1−α)pk(dk, r
1
k) and ξ2 = αr1k + (1−α)pk(dk, r

2
k). Then, we obviously

have ξ1 > ξ2 and τ2 < τ4. Thus, we have

Vk+1(τ1, ξ1)− Vk+1(τ3, ξ1) =Vk+1(τ3 + (y1k − y2k), ξ1)− Vk+1(τ3, ξ1)

≥Vk+1(τ4 + (y1k − y2k), ξ1)− Vk+1(τ4, ξ1)

=Vk+1(τ2, ξ1)− Vk+1(τ4, ξ1)

≥Vk+1(τ2, ξ2)− Vk+1(τ4, ξ2),

where the first inequality follows from the concavity of Vk+1 and the second inequal-

ity follows from the supermodularity of Vk+1(τ, ξ) in (τ, ξ) according to the induc-
tion assumption. This implies that Vk+1(y

1
k − dk(pk, rk) + Θkqk − εk, ξ) − Vk+1(y

2
k −

dk(pk, rk) + Θkqk − εk, ξ) is increasing in rk. We thus get the supermodularity of

Vk+1(yk − dk +Θkqk − εk, αrk + (1− α)pk) in (yk, rk). Consequently, Jk(yk, dk, qk, rk) is
supermodular in (yk, rk).

Third, the supermodularity of Jk(yk, dk, qk, rk) in (dk, rk) is similar to that of The-
orem 6 in Güler et al. [21].

(ii) The supermodularity of Jk(yk, dk, qk, rk) in (qk, rk) is similar to the supermodu-
larity of Jk(yk, dk, qk, rk) in (yk, rk). Thus, we omit it here.
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In summary, Jk(yt, dt, qt, rt) is supermodular in (xt, rt). Hence, Vk(xk, rk) is super-
modular in (xt, rt). This completes the proof. ���

Proof of Theorem 2. (i), (ii) and (iii) are the direct consequences of Corollary 1, while
(iv) is the direct consequence of Assumption 1. (v) has been proved in Lemma 1(i). ���

Proof of Theorem 3. This follows directly from Theorem 2 that the CG model is a

special case of our model, i.e., rt = pt for all t = 1, 2, . . . , T . ���
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