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Abstract

This paper addresses the effect of deterioration and partial substitution on optimal inven-

tory decisions for an inventory model of two substitutable items, where one item is composed

with two complementary components. In practical, substitution frequently occurs in situa-

tion of stock-out. Here, the level of inventory depletes due to combined effect of deterioration

and demand, and in situation of stock-out, the unmet demand of one item is partially sub-

stituted by another item. The demand and deterioration are taken to be deterministic and

constant. In the proposed model, we formulate the problem in two possible cases: par-

tial substitution and no substitution. Further, pseudo-convexity for total cost functions is

derived to ensure unique optimal solution and the solution procedure is outlined to find

optimum value of order quantities such that the total cost is minimized. Numerical example

and sensitivity analysis are provided to demonstrate the effect of different input parameters

on optimal solution.

Keywords: Optimal inventory decisions, complementary and substitutable items, deteri-

oration, cost of substitution, partial substitution.

1. Introduction

This paper belongs to the area of inventory model for substitutable and comple-

mentary deteriorating items by considering joint replenishment, stock-out, two-way and

partial substitution, and cost of substitution. In general, substitution is a process in

which one item is substituted by another alternate item to fulfil the customer’s demand

and items under the process of substitution, are called substitutable items. For example,

different brands of milk, different brands of mobiles phone, Coffee and tea, sim card of

different companies and different brands of laptops etc. are categorized as substitutable

items. In real word system, the phenomenon of stock-out substitution can be experienced

frequently and plays vital role in inventory decisions and our daily life because almost all

of customers wish to minimize their purchasing time. In current scenario, it is frequently

seen that customers buy substitutable items instead of going to other shop when they

meet with case of stock-out of preferred items. A survey of Anupindi et al.[1] indicates
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the above phenomenon. Substitution event enhances the efficiency of inventory system

as result, inventory system saves the inventory cost. Another advantage of substitution

process is to advertise the substitutable items. In the substitution process, one additional

cost is induced, called cost of substitution. In real word, there is occurred another real

situation which is related to complementary items. Those items which are consumed to-

gether, are called complementary items. For example: tyre and tube, mobile phone and

its charger, computer hardware and software, mobiles phone and sim card, android mo-

bile phone and its applications are categorized as complementary items. Complementary

items experience joint demand and joint purchasing. On being increase in demand of one

complementary item, demand of other complementary item also increases i.e. the change

of demands of complementary items follows same direction. In the proposed model, on

being out of stock of one item due to demand and deterioration, its remaining demand is

partially fulfilled by another alternate item. Therefore, there is one possibility of substitu-

tion: partial substitution (asymmetrical substitution). Substitution can be classified into

three types of substitution: inventory-based substitution or stock-out based substitution,

price-based substitution and assortment-based substitution. Inventory-based substitu-

tion occurs when desired item is out of stock, in this substitution its unsatisfied demand

may be fulfilled by the substitute items. price-based substitution occurs when the price

differences cause the phenomenon of substitution and in assortment-based substitution,

customer prefer those substitute items which are newly added in assortment (see Shin

et al. [37]). Further, stock-out based substitution can be also categorized as symmetri-

cal and asymmetrical (see Kim and Bell [22] and Rasouli, and NakhaiKamalabadi [34]).

According to their definition, symmetrical substitution occurs if lost demands of one

item are completely met with substitute items and asymmetrical substitution occurs if

a fraction of lost demands of one item is met with substitute items. This model has

been derived under partial substitution. In practice, partial substitution (asymmetrical

substitution) happens more than full substitution (symmetrical substitution) because all

customers do not prefer substitutable items. So, partial substitution is a better realistic

phenomenon than full substitution. Next concept introduced in this paper is deteri-

oration. Generally, deterioration is defined as spoilage, damage, decay, obsolescence,

evaporation and loss of utility of physical goods which results in its reducing usefulness.

In many inventory systems, the effect of deterioration cannot be ignored, especially for

food industry, fashion industry, chemical industry etc. Nearly 20% of food never reaches

to consumers because of decay or spoilage (see Sethi and Shruti [36]). Items such as

fresh food, vegetables and fashion goods, etc. may be considered as deteriorating items.

Thus, this inventory model by considering complementary items, substitutable items,

cost of substitution, and deterioration simultaneously under phenomenon of partial sub-

stitution is more realistic than other existing models in this direction. In this paper, we

study inventory model for two substitutable deteriorating items with partial substitution

(asymmetrical stock-out substitution), where one item is made with two complementary

components. For proposed inventory model, the total cost function is derived mathemat-

ically for two possible cases and solution procedures are developed. Aim of this model is

to determine optimal order quantities which minimize the total inventory cost.
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The rest of the paper is arranged as follows. Section 2 describes literature review,

Section 3 involves notations and assumptions, Section 4 describes mathematical formu-

lation, in Section 5 solution procedure is suggested to determine optimal total cost and

optimal order quantities, in Section 6 numerical examples and sensitivity analysis are

presented, and finally Section 7 refers to the conclusions and future work.

2. Literature Review

Firstly, we discuss the inventory models for deteriorating items and then inventory

models for substitutable items. Thereafter, we discuss the inventory model for comple-

mentary and substitutable deteriorating items. The fundamental inventory model was

studied by Harris [16] and this inventory model was extended by Wilson [41] to obtain

formula for the economic order quantity (EOQ). First inventory model for deteriorating

items was studied by Whitin 40 and he considered fashion items as deteriorating items.

Further, many researchers studied different types of deteriorating inventory models con-

sidering realistic phenomenon. The review papers on inventory model for deteriorating

items of Goyal and Giri 14, Bakker et al. [2], and Janssen et al. [19] may be referred

by the readers. Further, Yong and Wang 42 proposed a production-inventory model

for deteriorating items with demand disruption. In real-life, production-inventory sys-

tems, demand disruption and deterioration of products cannot be avoided. Pando et

al. [33] proposed inventory model for deteriorating items with stock-dependent demand

introducing that the holding cost is nonlinear function in both time and stock level.

Joint pricing and inventory control for two competing retailers with deteriorating items

is studied by Mahmoodi 26.

The first inventory model for substitutable item was developed by McGillivray and

Silver [27] by proposing that the substitutable items have equal unit variable cost and

shortage penalty. Reader may refer the review paper on inventory models for substi-

tutable items by Sin et al. [37]. To the best of our knowledge, the research papers on

complementary and substitutable items concurrently are very few contributions in lit-

erature. Most of research papers on complementary item consist of price decisions and

research papers consisting inventory decisions are rarely available in literature. While,

this paper consists of inventory decisions and develops an inventory model for two deteri-

orating items under substitution and completion, by considering partial substitution, cost

of substitution, and joint replenishment. Joint replenishment policy is more beneficial in

inventory model of two or more than two items because if two or more than two items

are ordered jointly then transportation cost, fixed ordering cost can be reduced. Readers

may study review paper on joint replenishment by Khouja and Goyal [21]. Summary of

literature review related to our article in categories of substitutable items, direction of

substitution, complementary items, deterioration, cost of substitution and full or partial

substitution are presented in Table 1 as Taxonomy of past research works in literature.
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Under One-way substitution, Chand et al. [5] studied parts selection model, Drezner

et al. [8] developed an EOQ model for two substitutable items considering joint replen-

ishment policy and studied the cases of full substitution, partial substitution and no

substitution and investigated that only partial substitution or no substitution may be

optimal and full substitution is never optimal. Goyal [13] studied an inventory model for

two substitutable products with full substitution. While, Ernst and Kouvelis [10] pro-

posed the effects of selling packaged goods on inventory decisions in which they studied

on two individual products and one packaged product and no substitution between indi-

vidual products but substitution between one of two individual products and packaged

product in case of stock-out substitution under two-way and full substitution. Further,

Gurnani and Drezner 15 extended the work of Drezner et al. [8] for multiple products

with one-way substitution and full substitution. Hsu et al. [18] studied a dynamic lot-

size model under one-way item and full substitution where the items are indexed in such

a way that a lower-index item may be used to substitute for the demand of a higher-

index item while Tang and Yin [39] studied joint ordering and pricing strategies for two

substitutable items under two-way and full substitution. Further, considering one-way

substitution Zhang et al. [44] studied EOQ model for two substitutable items with partial

substitution, Liu et al. [25] studied two perishable inventory model with full substitution

which is inspired by the ABO issue related to the blood bank system and Salameh et

al. [35] studied EOQ model for two substitutable items with partial substitution and

joint replenishment policy. Salameh et al. [35] extended the work of Drezner et al. [8]

by taking partial and two-way substitution. Taking only complementary items, Yuhong

and Shuya [43] studied the joint selling of complementary components under brand and

retail Competition and Hemmati et al. [17] developed an integrated two-stage model,

which consists of one vendor and one buyer for two complementary products under con-

signment policy and stock-dependent demand. Under two-way substitution Krommyda

et al. [23] proposed optimal order quantity model for two substitutable items with stock-

dependent demand considering partial substitution, Giri et al. [12] proposed two-echelon

supply-chain system, having a competition of selling two substitutable items and one

complementary item using common retailer and Maddah et al. [25] extend the work of

Salameh et al. [35] and developed an inventory model for multiple substitutable items

to obtain optimal order quantities under joint replenishment with partial substitution.

While, Benkherouf et al. [3] developed an inventory decision model for finite horizon

problem of substitutable items, taking time varying demand under one-way and full

substitution. In addition, under two-way and partial substitution Mishra and Shanker

30 proposed an inventory model of two substitutable items to determine optimal order

quantities under joint replenishment with cost of substitution, Mishra and Shanker [29]

proposed an inventory model of two substitutable deteriorating items under joint replen-

ishment policy to determine optimal ordering quantities and Mishra [28] extended the

work of [29], by considering cost of substitution. Further, under two-way substitution

Pan et al. [32] developed an inventory replenishment model for two-inventory based sub-

stitutable items with full substitution and obtained the optimal replenishment cycle time
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and ending inventory levels, Chen. et. al. [7] proposed an inventory model for Joint re-

plenishment decision taking shortages, partial demand substitution, and defective items

and Mokhtari 31 developed an EOQ model for two-substitutable items where one item is

composed with two complementary components and he considered joint ordering policy

and full substitution. Further, Jing and Mu 20 developed a Forecast horizon for dy-

namic lot sizing model of two perishable products (one of them is fresh and another is

frozen) with one-way and full substitution, also considering cost of substitution and Giri

et al. [11] developed joint replenishment model for two substitutable items in fixed time

horizon with two-way and one-way substitution. Moreover, Taleizadeh et al. [38] stud-

ied pricing decisions for two items, where items may be complementary or substitutable

and Edalatpour et al. [9] analysed simultaneous pricing and inventory decisions for com-

plementary and substitutable items with nonlinear holding cost. This article goals to

fill the gaps in above direction by considering complementary and substitutable items

simultaneously, deterioration, cost of substitution, and partial substitution.

This paper is an extension of the work of Mokhtari [31] in three directions: deteri-

oration, cost of substitution, and partial substitution, the work of Mishra and Shanker

[30] in two directions complementary items and deterioration, and the work of Mishra

and Shanker [29] in two directions complementary items and cost of substitution. To

best of our knowledge, research papers on optimal inventory decisions for complementary

and substitutable deteriorating items under joint replenishment with cost of substitution,

considering two-way and partial substitution are not available in literature. So, this in-

ventory model makes models of Mokhtari [31], Mishra and Shanker [30] and Mishra and

Shanker [29] more realistic by introducing these directions of extension.

3. Notations and Assumptions

In this paper, the following notations and assumptions are used.

3.1. Notations

The following notations are used throughout the paper.

Parameters

D1,D2 Demand rates for items 1 and 2.

θ Deterioration rate of items 1 and 2.

h1, h2 Holding cost per unit of time of items 1 and 2.

A1, A2 Ordering cost of items 1 (for complementary components α1 and α2) and 2.

a1, a2 Usage rates of two complementary components of item 1.

CS12 Unit substitution cost for item 1 when it is substituted by item 2.

CS21 Unit substitution cost for item 2 when it is substituted by item 1.

γ1, γ2 Rates of substitution of item 1 by item 2 and of item 2 by item 1 respectively.

σ1, σ2 Shortage cost per unit for items 1 and 2.
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Intermediate variables

p1 Time interval during which substitution occurs in situation (i).

p2 Time interval during which substitution occurs in situation (ii).

t1, t2 Time when item 1 and 2 completely depleted.

z Inventory level of item 2 at time t1 in situation (i).

z1, z2 Inventory level of two complementary components of item 1 at time t2 in

situation (ii).

P1 Time interval during which substitution occurs in situation (i).

P2 Time interval during which substitution occurs in situation (ii).

Decision variables

q1, q2 Ordering quantities of two complementary components α1 and α2 of item 1.

Q2 Ordering quantity of item 2.

q∗1p, q
∗

2p, Q
∗

2p Optimal ordering quantities in case of partial substitution.

q∗1w, q
∗

2w, Q
∗

2w Optimal ordering quantities in case of no substitution.

Functions

I1(t), I2(t) Inventory levels of two complementary components of item 1.

I111(t) Inventory level of first complementary component α1 of item 1 when item 1

depleted before item 2.

I112(t) Inventory level of second complementary component α2 of item 1 when item

1 depleted before item 2.

I12 (t) Inventory level of item 2 when item 1 depleted before item 2.

i13(t) Inventory level of item 2 during substitution, when item 1 depleted before item

2.

I211(t) Inventory level of first complementary component α1 of item 1 when item 2

depleted before item 1.

I212(t) Inventory level of second complementary component α2 of item1 when item

2 depleted before item 1.

I22 (t) Inventory level of item 2 when item 2 depleted before item 1.

i23(t) Inventory level of first complementary component α1 of item 1 during substi-

tution, when item 2 depleted before item 1.

i24(t) Inventory level of second complementary component α2 of item 1 during sub-

stitution, when item 2 depleted before item 1.
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Objective functions

• Case of partial substitution

TC1p Total cost per cycle in situation (i).

TC2p Total cost per cycle in situation (ii).

TCU1p Total cost per unit time in situation (i).

TCU2p Total cost per unit time in situation (ii).

• Case of no substitution

TCW Total cost per cycle.

TCUW Total cost per per unit time.

3.2. Assumptions

The following assumptions are used in mathematical formulation of inventory model.

(1) The inventory system contains two substitutable items (similar in quality) where first

item is composed with two complementary components.

(2) Both items are deteriorating.

(3) Joint ordering policy is used.

(4) Lead time is zero and replenishment is instantaneous i.e. replenishment rate is infinite.

(5) Demand is deterministic and constant.

(6) Deterioration rate is deterministic and constant.

(7) Substitution is two-way and stock-out.

(8) Demand of one item can be partially substituted by another item.

Situations (i) and (ii) for case of partial substitution are discussed in further section.

4. Mathematical Formulation

First, we establish the relation between q1 and q2. Then, we formulate and find the

solution for partial substitution and no substitution.

It is assumed that item 1 is composed with two complementary components α1 and

α2 and their consumption rates (usage rates) a1 and a2 means that one unit of item

1 is made with a1 unit of first complementary component α1 and a2 unit of second

complementary component α2.

So, demand rates of two complementary components α1 and α2 are a1D1 and a2D1

respectively. These components are ordered jointly and replenished instantaneously for

the aim of cost saving. Initially, inventory levels of two components α1 and α2 are q1
and q2 respectively whose demand rates are a1D1 and a2D1. The inventory levels of both

complementary components moderately reached to zero on account of deterioration and
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Figure 1: Inventory diagram for two complementary components of item 1.

demand. Inventory diagram for inventory levels of two complementary components of

item 1 is represented by Figure 1.

Inventory levels of both complementary components of item 1 are governed by the

following differential equations.

dI1(t)

dt
+ θI1(t) = −a1D1; 0 ≤ t ≤ t1. (4.1)

With boundary conditions I1(0) = q1 and I1(t1) = 0

dI2(t)

dt
+ θI2(t) = −a2D1; 0 ≤ t ≤ t1. (4.2)

With boundary conditions I2(0) = q2 and I2(t1) = 0.

After solving (1) and (2), we get

I1(t) =

(

q1 +
a1D1

θ

)

e−θt −
a1D1

θ
; 0 ≤ t ≤ t1, (4.3)

I2(t) =

(

q2 +
a2D1

θ

)

e−θt −
a2D1

θ
; 0 ≤ t ≤ t1. (4.4)

Now, I1(t1) = 0 gives as

eθt1 = 1 +
θq1

a1D1
, (4.5)

I2(t1) = 0, gives as

eθt1 = 1 +
θq2

a2D1
. (4.6)

From equations (4.5) and (4.6), we get

q2 =
(a2

a1

)

q1, (4.7)

which is relation between q1 and q2 due to joint replenishment policy.
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Now, we developed proposed inventory model for cases; partial substitution and no

substitution separately. Initially, inventory levels of two complementary components of

item 1 are q1 and q2 and inventory level of item 2 is Q2 whose demand rates are a1D1,

a2D1 and D2 respectively. The inventory levels of both items moderately reached to zero

on account of deterioration and demand.

4.1. Case of partial substitution

In this case, there are two possible situations;

Situation (i): Item 1 depletes before item 2 i.e. if item 1 is out of stock, as shown in

Figure 2, then item 1 is partially substituted by the item 2.

Situation (ii): Item 2 depletes before item 1 i.e. if item 2 is out of stock, as shown in

Figure 3, then item 2 is partially substituted by the item 1.

Inventory level

 

 

 

( ) 

( )

( ) 

( ) 

 

Time
 

 

 

 

 

 

 

 

Shortage

Figure 2: Inventory diagram in situation (i) (t1 ≤ t2).

To derive the total costs per unit time in two possible situations, we are describing below.

Situation (i): Item 1 depletes before item 2 (t1 ≤ t2).

In this situation (t1 ≤ t2) as shown in Figure 4), item 1 is completely consumed

within inventory cycle of item 2. At this instant, substitution occurs for item 1 by

item 2. The unsatisfied demand of item 1 is partially fulfilled by remaining inventory of

item 2, with consumption rate γ1D1. Certainly, inventory of item 2 is consumed with

consumption rate (γ1D1 +D2) during period of substitution (P1). Here, total cost per
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Figure 3: Inventory diagram in situation (ii) (t1 ≥ t2).

Inventory level
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Figure 4: Inventory diagram in case of no substitution.

inventory cycle consists of fixed ordering costs, holding costs, cost of substitution and

shortage cost. Total cost per unit time is obtained by dividing total cost per inventory

cycle by length of inventory cycle. To find various cost components, we obtain inventory

levels related to this situation.

Inventory levels of items 1 and 2 are governed by following differential equations

dI111(t)

dt
+ θI111(t) = −a1D1; 0 ≤ t ≤ t1. (4.8)
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With boundary conditions I111(0) = q1 and I111(t1) = 0

dI112(t)

dt
+ θI112(t) = −a2D1; 0 ≤ t ≤ t1. (4.9)

With boundary conditions I112(0) = q2 and I112(t1) = 0

dI12 (t)

dt
+ θI12 (t) = −D2; 0 ≤ t ≤ t1. (4.10)

di13(t)

dt
+ θi13(t) = −(γ1D1 +D2); t1 ≤ t ≤ t1 + P1. (4.11)

With boundary conditions i13(0) = z and i13(t1 + P1) = 0.

After solving, we get

I111(t) =

(

q1 +
a1D1

θ

)

e−θt −
a1D1

θ
; 0 ≤ t ≤ t1, (4.12)

I112(t) =

(

q2 +
a2D1

θ

)

e−θt −
a2D1

θ
; 0 ≤ t ≤ t1, (4.13)

I12 (t) =

(

Q2 +
D2

θ

)

e−θt −
D2

θ
; 0 ≤ t ≤ t1, (4.14)

i13(t) =

(γ1D1 +D2

θ

)

(eθ(t1+P1−t) − 1); t1 ≤ t ≤ (t1 + P1). (4.15)

In this situation, total cost of item 1 per cycle (TC11p) consisting fixed ordering costs

and holding costs of both complementary components α1 and α2 is given by TC11p =

2A1 + h1

(

∫ t1
0 (I111(t) + I112(t))dt

)

using equations (4.12) and (4.13), we get

TC11p =

[

2A1 +
h1

θ2

(

θ(q1 + q2)− a1D1 ln

(θq1 + a1D1

a1D1

)

− a2D1 ln

(θq2 + a2D1

a2D1

)

)]

.

(4.16)

To calculate the total cost of item 2 per cycle, firstly we find

Inventory level of item 2 at time t1 i.e. inventory level of item 2 when item 1 becomes

out of stock is

z =

(Q2a1D1 −D2q2

θq1 + a2D1

)

. (4.17)

Substitution period is

P1 = ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq2 + a1D1)

)

. (4.18)

Length of inventory cycle

= t1 + P1 =
1

θ
ln

(θ(Q2a1 + q1γ1) + a1(γ1D1 +D2)

a1(γ1D1 +D2)

)

. (4.19)
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In this situation, the total cost of item 2 per cycle consisting fixed ordering cost and

holding cost is given by

TC12 = A2 + h2

(

∫ t1

0
I12 (t)dt+

∫ t1+P1

t1

i13(t)dt
)

. (4.20)

Using equations (4.14) and (4.15), we get

TC12p =

[

A2 +
h2

θ2

(

θQ2 − γ1D1 ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq1 + a1D1)

)

−D2 ln

(θ(Q2a1 + q1γ1) + a1(γ1D1 +D2)

a1(γ1D1 +D2)

)

)

]

. (4.21)

Now total number of substituted units for item 1 by item 2 per cycle

= γ1D1P1 =
γ1D1

θ
ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq1 + a1D1)

)

. (4.22)

Cost of substitution = CS12
γ1D1

θ
ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq1 + a1D1)

)

. (4.23)

Total shortage units of item 1

= (1− γ1)D1P1 = (1− γ1)
D1

θ
ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq1 + a1D1)

)

. (4.24)

Shortage cost

= σ1(1− γ1)D1P1 = σ1(1− γ1)
D1

θ
ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq1 + a1D1)

)

. (4.25)

Total cost per cycle is sum of total cost of item 1 per cycle, total cost of item 2 per cycle,

cost of substitution, and shortage cost i.e. TC1 = TC11p + TC12p+ cost of substitution

+ shortage cost, which gives as

TC1p =

[

(2A1+A2)+
h1

θ2

(

θ(q1+q2)−a1D1 ln

(θq1+a1D1

a1D1

)

− a2D1 ln

(θq2+a1D1

a2D1

)

)

+
h2

θ2

(

θQ2 − γ1D1 ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq1 + a1D1)

)

−D2 ln

(θ(Q2a1 + q1γ1) + a1(γ1D1 +D2)

a1(γ1D1 +D2)

)

)

+ CS12
γ1D1

θ
ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq1 + a1D1)

)

+ σ1(1− γ1)
D1

θ
ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq1 + a1D1)

)

]

. (4.26)
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Finally, in this situation, total cost per unit time

(TCU1) = TC1/(t1 + P1). (4.27)

Using joint replenishment condition, q2 =
(a2

a1

)

q1, TCU1p can be written in terms of q1

and Q2 as

TCU1p =
θ

ln

(

θ(Q2a1+q1γ1)+a1(γ1D1+D2)
a1(γ1D1+D2)

)

[

(2A1+A2)

+
h1

θ2

(

θ(q1+
a2

a1
q1)−a1D1 ln

(θq1+a1D1

a1D1

)

− a2D1 ln

(θ a2
a1
q1+a2D1

a2D1

)

)

+
h2

θ2

(

θQ2 − γ1D1 ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq1 + a1D1)

)

−D2 ln

(θ(Q2a1 + q1γ1) + a1(γ1D1 +D2)

a1(γ1D1 +D2)

)

)

+ CS12
γ1D1

θ
ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq1 + a1D1)

)

+ σ1(1− γ1)
D1

θ
ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq1 + a1D1)

)

]

. (4.28)

Now, TCU1p is a function of decision variables q1 and Q2. Hence condition of phe-

nomenon of this situation i.e. t1 ≤ t2 can be expressed in terms of Q2 and q1 as

q1

a1D1
≤

Q2

D2
which will works as constraint of optimization problem for this situation,

described in Section 5.

Situation (ii): Item 2 depletes before item 1 (t1 ≥ t2).

In this situation (t1 ≥ t2 as shown in Figure 5), item 2 is completely consumed

within inventory cycle of item 1. At this instant, substitution occurs for item 2 by

item 1. Demand of item 2 is partially fulfilled by remaining inventory of item 1, with

consumption rate γ2D2. Certainly, inventory of both complementary components α1

and α2 is consumed with consumption rate a1(D1 + γ2D2) and a2(D1 + γ2D2) during

period of substitution (P2). Total cost per unit time is obtained by dividing total cost

per inventory cycle by length of inventory cycle. To find various cost components, we

obtain inventory levels related to this situation.

Inventory levels of items 1 and 2 are governed by following differential equations.

dI211(t)

dt
+ θI211(t) = −a1D1; 0 ≤ t ≤ t2. (4.29)

With boundary conditions I211(0) = q1 and I211(t2) = z1

dI212(t)

dt
+ θI212(t) = −a2D1; 0 ≤ t ≤ t2. (4.30)
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With boundary conditions I212(0) = q2 and I212(t2) = z2

dI22 (t)

dt
+ θI22 (t) = −D2; 0 ≤ t ≤ t2, (4.31)

di23(t)

dt
+ θi23(t) = −a1(D1 + γ2D2); t2 ≤ t ≤ t2 + P2. (4.32)

With boundary conditions I23 (t2) = z1 and I13 (t2 + P2) = 0

di24(t)

dt
+ θi24(t) = −a1(D1 + γ2D2); t2 ≤ t ≤ t2 + P2. (4.33)

With boundary conditions i24(t2) = z2 and i24(t2 + P2) = 0

After solving, we get

I211(t) =
(

q1 +
a1D1

θ

)

e−θt −
a1D1

θ
; 0 ≤ t ≤ t2, (4.34)

I212(t) =
(

q2 +
a2D1

θ

)

e−θt −
a2D1

θ
; 0 ≤ t ≤ t2, (4.35)

I22 (t) =
(

Q2 +
D2

θ

)

e−θt −
D2

θ
; 0 ≤ t ≤ t2, (4.36)

i23(t) =
a1(D1 + γ2D2)

θ

(

eθ(t2+P2−t) − 1

)

; t2 ≤ t ≤ (t2 + P2), (4.37)

i24(t) =
a2(D1 + γ2D2)

θ

(

eθ(t2+P2−t) − 1

)

; t2 ≤ t ≤ (t2 + P2). (4.38)

To calculate the total cost of item 1 per cycle, we find Inventory level of first comple-

mentary component α1 of item 1 at time t2 i.e. inventory level of first complementary

component α1 of item 1 when item 2 becomes out of stock is

z1 =
(q1D2 −Q2a1D1

θQ2 +D2

)

. (4.39)

Time when item 2 is depleted is

t2 =
1

θ
ln

(θQ2 +D2

D2

)

. (4.40)

Substitution period

P2 =
1

θ
ln

(θD2(Q2γ2a1 + q1) + a1D2(D1 + γ2D2)

a1(D1 + γ2D2)(θQ2 +D2)

)

. (4.41)

Length of inventory cycle is

t2 + P2 =
1

θ
ln

(θ(Q2γ2a1 + q1) + a1(D1 + γ2D2)

a1(D1 + γ2D2)

)

. (4.42)

Consequently, the total cost of item 1 per cycle is

TC21p =2A1+h1

(
∫ t2

0

(

I211(t)i
2
3(t)

)

dt+

∫ t2+P2

t2

(

I212(t) + i24(t)
)

dt

)

,
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TC21p =

[

2A1+
h1

θ2

(

θQ2(θ(q1 + q2) +D1(a1 + a2))

(θQ2 +D2)
−D1(a1+a2) ln

(θQ2 +D2

D2

)

+ θ
(D2(q1 + q2)−Q2D1(a1 + a2)

(θQ2 +D2)

)

)

−
h1(D1 + γ2D2)

θ2

(

a1 ln
(θD2(Q2γ2a1 + q1) + a1D2(D1 + γ2D2)

a1(D1 + γ2D2)(θq1 + a1D1)

)

+ a2 ln
(θD2(Q2γ2a2 + q2) + a2D2(D1 + γ2D2)

a2(D1 + γ2D2)(θq1 + a1D1)

)

)

]

. (4.43)

The total cost of item 2 per cycle (t2 + P2) consisting of fixed ordering cost and holding

cost is

TC22p =

[

A2 +
h2

θ2

(

θQ2 −D2 ln

(θQ2 +D2

D2

)

)]

. (4.44)

Now, total number of substituted units of item 2 by item 1 per cycle

= γ2D2P2 =
γ2D2

θ
ln

(θD2(Q2γ2a1 + q1) + a1D2(D1 + γ2D2)

a1(D1 + γ2D2)(θQ2 +D2)

)

. (4.45)

Cost of substitution = CS21
γ2D2

θ
ln

(θD2(Q2γ2a1 + q1) + a1D2(D1 + γ2D2)

a1(D1 + γ2D2)(θQ2 +D2)

)

. (4.46)

Total shortage unit of item 2

= (1− γ2)D2P2 =
(1− γ2)D2

θ
ln

(θD2(Q2γ2a1 + q1) + a1D2(D1 + γ2D2)

a1(D1 + γ2D2)(θQ2 +D2)

)

. (4.47)

Shortage cost = σ2
(1− γ2)D2

θ
ln

(θD2(Q2γ2a1 + q1) + a1D2(D1 + γ2D2)

a1(D1 + γ2D2)(θQ2 +D2)

)

. (4.48)

Finally, in this situation, total cost per unit time is

TCU2p = (TC21p + TC22p + cost of substitution + shortage cost)/(t2 + P2). (4.49)

Using, q2 =
(a2

a1

)

q1 in equation (4.49), TCU2p can be written in terms of q1 and Q2 as

TCU2p =
θ

ln

(

θ(Q2γ2a1+q1)+a1(D1+γ2D2)
a1(D1+γ2D2)

)

[

(2A1+A2)

+
h1

θ2

(

θQ2(θ(q1 +
a2
a1
q1) +D1(a1 + a2))

(θQ2 +D2)
−D1(a1+a2) ln

(θQ2 +D2

D2

)

+ θ
(D2(q1 +

a2
a1
q1)−Q2D1(a1 + a2)

(θQ2 +D2)

)

)

−
h1(D1 + γ2D2)

θ2

(

a1 ln
(θD2(Q2γ2a1 + q1) + a1D2(D1 + γ2D2)

a1(D1 + γ2D2)(θq1 + a1D1)

)
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+ a2 ln
(θD2(Q2γ2a2 + q2) + a2D2(D1 + γ2D2)

a2(D1 + γ2D2)(θq1 + a1D1)

)

)

+
h2

θ2

(

θQ2 −D2 ln

(θQ2 +D2

D2

)

)

+ CS21
γ2D2

θ
ln

(θD2(Q2γ2a1 + q1) + a1D2(D1 + γ2D2)

a1(D1 + γ2D2)(θQ2 +D2)

)

+ σ2
(1− γ2)D2

θ
ln

(θD2(Q2γ2a1 + q1) + a1D2(D1 + γ2D2)

a1(D1 + γ2D2)(θQ2 +D2)

)

]

. (4.50)

Now, TCU2p is a function of decision variables q1 and Q2. Hence condition of phe-

nomenon of this situation i.e. t1 ≥ t2 can be expressed in terms of Q2 and q1 as

q1

a1D1
≥

Q2

D2
which will works as constraint of optimization problem for this situation,

described in Section 5.

4.3. Case of no substitution

Items 1 and 2 deplete simultaneously (t1 = t2) i.e. both items become out of stock

at the same.

Total cost per cycle with no substitution under joint replenishment condition con-

sisting of fixed ordering cost and holding cost is

TCW =

[

(2A1 +A2)+
h1

θ2

(

θ(q1 + q2)− a1D1 ln

(θq1 + a1D1

a1D1

)

− a2D1 ln

(θq2 + a2D1

a2D1

)

)

+
h2

θ2

(

θQ2 −D2 ln

(θQ2 +D2

D2

)

)

]

. (4.51)

Thus, total cost per unit time with no substitution under joint replenishment is given by

TCUW =
θ

ln

(

θq1+a1D1

a1D1

)

[

(2A1+A2)

+
h1

θ2

(

θ(q1+
a2

a1
q1)−a1D1 ln

(θq1+a1D1

a1D1

)

− a2D1 ln

(θ a2
a1
q1+a2D1

a2D1

)

)

+
h1

θ2

(

θQ2 −D2 ln

(θQ2+D2

D2

)

)

]

. (4.52)

Now, TCUW is a function of decision variables q1 and Q2. Hence condition for phe-

nomenon of this situation i.e. t1 = t2 can expressed in terms of q1 and Q2 as
q1

a1D1
=

Q2

D2
(condition of joint replenishment), which will works as constraint of optimization problem

for this situation, described in Section 5.
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5. Solution Procedure

In this section, firstly we prove pseudo-convexity for total cost functions in situations

(i) and (ii) for partial substitution, as result of which the total inventory cost functions

attain a unique optimal solution. The theorems for pseudo-convexity stated as:

Theorem 1. The total cost function (TCU1p) is pseudo-convex if

γ1h2 =
(

θCS12γ1 + σ1(1− γ1)
)

.

Proof. See Appendix 1(a).

Theorem 2. The total cost function (TCU2p) is pseudo-convex if

γ2h1 =
(

θCS21γ2 + σ2(1− γ2)
)

.

Proof. See Appendix 1(b).

Optimal order quantities and optimal total cost will be determined by using the

following algorithm.

Algorithm to determine optimal order quantities

Step I- Initialize the values of parameters of inventory system.

Step II- Solve the nonlinear constrained optimization problem for situations (i) and (ii)

of partial substitution respectively as follows:

OP1p−Find (q1, Q2) such that min (TCU1p) subject to
q1

a1D1
≤

Q2

D2
, q1, Q2 ≥ 0.

OP2p−Find (q1, Q2) such that min (TCU2p) subject to
q1

a1D1
≥

Q2

D2
, q1, Q2 ≥ 0.

Step III- To find optimal total cost (TCU∗

p ), we use TCU∗

p = (minTCU1p,minTCU2p).

Optimal ordering quantities corresponding to TCU∗

p are q∗1p and Q∗

2p, and value of q∗2p is

calculated by q∗2p =
(a2

a1

)

q∗1p.

Step IV- Find (q1, Q2) such that min (TCUW ) subject to
q1

a1D1
=

Q2

D2
, q1, Q2 ≥ 0.

Step V- Compare optimal total costs obtained in Step III and Step IV.

6. Numerical Example and Sensitivity Analysis

6.1. Numerical Example

In this section, to illustrate the applicability and performance of proposed inventory

system, we introduce and describe numerical example. Here, we provide a numerical

example whose initial parameters as defined in Table 2.
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Table 2: Initial parameters for case of partial substitution.

Parameter Item 1 Item 2

Demand rates D1, D2 500 750

Fixed ordering cost A1, A2 250 200

Usages rates a1, a2 3 4

Holding cost h1, h2 1.65 1.65

Deterioration rate θ 0.90 0.90

Cost of substitution CS12, CS21 0.90 0.90

Rates of substitution γ1, γ2 0.35 0.35

Shortage cost σ1, σ2 0.50 0.50

Using algorithm described in above section, optimal solution of first optimization

problem (OP1p) is q∗11p = 87.49, Q∗

21p = 988.10, TCU∗

1p = 1967.21 and optimal solution

of second optimization problem (OP2p) is q∗12p = 1044.25, Q∗

22p = 522.12, TCU∗

2p =

2396.5. From Step III, we observe that first optimization problem (OP1p) gives the

optimal solution of original optimization problem in case of partial substitution. Hence,

optimal solution of original problem is q∗1p = 87.49, Q∗

2p = 988.10, TCU∗

p = 1967.21,

and q∗2p = 116.65. The optimal solution in case of no substitution is q∗1w = 1044.25,

Q∗

2w = 522.12, TCU∗

W = 2396.57 and q∗2w = 1392.33. By introducing phenomenon of

partial substitution, total inventory cost diminishes from 2396.57 to 1967.21 that shows

17.92 % saving.

Pseudo-convexity of total cost function TCU1p is shown by graphically in Figure 5,

Figure 6, and Figure 7.

Figure 5: Total cost function (TCU1p) vs. q1,

keeping Q2 as constant.

Figure 6: Total cost function (TCU1p) vs. Q2,

keeping q1 as constant.
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Figure 7: Total cost function (TCU1p) vs. q1 and Q2.

6.2. Sensitivity analysis

Sensitivity analysis is defined as a systematic procedure to study the effect of changes

in value of parameter of inventory model on optimum values. In real situations, a sub-

stantial impact on optimal values of inventory model is seen on changing the values of

parameter of inventory model. In this proposed model, we investigate the impact of

values of parameter of this model- ordering costs A1, A2, rate of demands D1,D2, usages

rates a1, a2, holding costs h1, h2, deterioration rate θ, cost of substitution CS12, rate of

substitution γ1, and shortage cost σ1 on optimal total cost, optimal ordering quantities,

Table 3: Sensitivity Analysis for optimal solution with respect to various parameters.

% improvement

Partial substitution No substitution in optimal

total costs

Value

Parameter of TCU∗

p
q∗1p Q∗

2p TCU∗

W
q∗1w Q∗

2w % IP

parameter

150 1683.78 87.49 816.32 2000.00 871.46 435.73 15.81

200 1830.43 87.49 905.20 2205.46 960.98 480.49 17.00

A1 250 1967.21 87.49 988.10 2396.57 1044.25 522.12 17.92

300 2096.20 87.49 1066.27 2576.29 1122.56 561.28 18.63

350 2218.81 87.49 1140.59 2746.00 1196.82 598.41 19.20

100 1830.43 87.49 905.20 2205.46 960.98 480.49 17.00

150 1899.91 87.49 947.31 2302.60 1003.31 501.65 17.49

A2 200 1967.21 87.49 988.10 2396.57 1044.25 522.12 17.92

250 2032.58 87.49 1027.72 2487.71 1083.97 541.98 18.30

300 2096.20 87.49 1066.27 2576.29 1122.56 561.28 18.63

300 1787.49 52.49 960.84 1997.32 778.68 648.90 10.51

400 1877.67 69.99 974.66 2206.93 920.99 575.62 14.92

D1 500 1967.21 87.49 988.10 2396.57 1044.25 522.12 17.92

600 2056.15 104.98 1001.17 2571.04 1154.22 480.92 20.03

700 2144.51 122.48 1013.89 2733.49 1254.30 447.96 21.55
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% improvement

Partial substitution No substitution in optimal

total costs

Value

Parameter of TCU∗

p
q∗1p Q∗

2p TCU∗

W
q∗1w Q∗

2w % IP

parameter

550 1799.39 87.49 886.39 2344.10 1071.83 393.00 23.24

650 1885.88 87.49 938.81 2370.49 1057.78 458.37 20.44

D2 750 1967.21 87.49 988.10 2396.57 1044.25 522.12 17.92

850 2044.21 87.49 1034.76 2422.33 1031.22 584.35 15.61

950 2117.49 87.49 1079.18 2447.80 1018.64 645.14 13.49

1 1962.10 41.70 980.61 2119.91 402.64 603.96 7.44

2 1965.10 68.65 985.02 2262.90 744.98 558.74 13.16

a1 3 1967.21 87.49 988.10 2396.57 1044.25 522.12 17.92

4 1968.78 101.40 990.39 2522.53 1311.26 491.72 21.95

5 1969.99 112.10 992.14 2641.99 1553.2 465.96 25.44

2 1962.10 125.12 980.61 2119.91 1207.92 603.96 7.44

3 1965.10 102.97 985.02 2262.90 1117.48 588.74 13.16

a2 4 1967.21 87.49 988.10 2396.57 1044.25 522.12 17.92

5 1968.78 76.05 990.39 2522.53 983.44 491.72 21.95

6 1969.99 67.26 992.14 2641.99 931.92 465.96 25.44

1.15 1961.65 128.47 979.95 2281.56 1106.65 553.32 14.02

1.40 1964.95 104.09 984.79 2339.84 1074.14 537.07 16.02

h1 1.65 1967.21 87.49 988.10 2396.57 1044.25 522.12 17.92

1.90 1968.86 75.45 990.51 2451.86 1016.67 508.33 19.70

2.15 1970.12 66.33 992.33 2505.83 991.1 495.55 21.38

1.15 1725.60 86.11 1212.21 2372.44 1056.76 528.38 27.26

1.40 1851.92 86.79 1084.10 2384.54 1050.45 525.22 22.34

h2 1.65 1967.21 87.49 988.10 2396.57 1044.25 522.12 17.92

1.90 2073.94 88.19 912.84 2408.53 1038.16 519.08 13.89

2.15 2173.77 88.90 851.84 2420.44 1032.17 516.08 10.19

0.86 1958.97 87.49 983.11 2387.95 1040.5 520.25 17.96

0.88 1963.10 87.49 985.61 2392.26 1042.38 521.19 17.94

θ 0.9 1967.21 87.49 988.10 2396.57 1044.25 522.12 17.92

0.92 1971.32 87.49 990.59 2400.87 1046.13 523.06 17.89

0.94 1975.42 87.49 993.08 2405.16 1048.00 524.00 17.87

0.86 1960.74 85.57 988.64 2396.57 1044.25 522.12 18.19

0.88 1963.98 86.53 988.37 2396.57 1044.25 522.12 18.05

CS12 0.9 1967.21 87.49 988.10 2396.57 1044.25 522.12 17.92

0.92 1974.56 88.44 990.32 2396.57 1044.25 522.12 17.61

0.94 1981.89 89.40 992.53 2396.57 1044.25 522.12 17.30

0.25 1908.72 80.80 968.24 2396.57 1044.25 522.12 20.36

0.30 1938.13 84.12 978.33 2396.57 1044.25 522.12 19.13

γ1 0.35 1967.21 87.49 988.10 2396.57 1044.25 522.12 17.92

0.40 1995.97 90.90 997.56 2396.57 1044.25 522.12 16.72

0.45 2024.41 94.37 1006.70 2396.57 1044.25 522.12 15.53

0.40 1937.04 78.60 990.55 2396.57 1044.25 522.12 19.17

0.45 1952.16 83.04 989.34 2396.57 1044.25 522.12 18.54

σ1 0.50 1967.21 87.49 988.10 2396.57 1044.25 522.12 17.92

0.55 1982.21 91.93 986.82 2396.57 1044.25 522.12 17.29

0.60 1997.14 96.37 985.51 2396.57 1044.25 522.12 16.67
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Table 4: Impact of the changes of values of parameters on optimal total costs with substitution,

optimal total cost without substitution and percentage improvement.

Parameter Change in parameter TCU∗

p
TCU∗

W
% IP

A1
Increasement Positive Positive Positive

A2

D1
Increasement

Positive Positive Positive

D2 Positive positive Negative

a1
Increasement Same and positive Same and positive Same and positive

a2

h1
Increasement

Positive Positive Positive

h2 Positive Positive Negative

θ
Increasement

Positive Positive Negative

CS12 Positive Constant Negative

γ1
Increasement

Positive Constant Negative

σ1 Positive Constant Negative

and percentage improvements. Sensitivity analysis for optimal solution with respect to

various parameters is given by Table 3.

Table 4 reflects that ordering costs A1, A2 have positive impact on optimal total

inventory costs in partial substitution, no substitution, and percentage improvements

in full substitution as well as partial substitution (shown in Figure 8), whereas usages

rates a1, a2 have equal positive impact (shown in Figure 10). Demand rates D1,D2

also have positive impact on optimal total inventory cost in partial substitution, and no

substitution and D2 has negative impact on percentage improvements, whereas demand

rate D1 has positive impact on percentage improvement (shown in Figure 9). Holding

cost h1 has positive impact on optimal total inventory cost in partial substitution, no

substitution, and percentage improvements and h2 has same types of effect as h1 on

optimal total inventory costs in partial substitution, and no substitution and has negative

impact on percentage improvements (shown in Figure 11). Deterioration rate θ has

positive impact on optimal total inventory cost in partial substitution, no substitution,

while it has negative impact on percentage improvements (shown in Figure 12). Further,

cost of substitution CS12 has positive impact on optimal total inventory cost in partial

substitution, and has no impact on optimal total inventory costs in no substitution,

whereas it has negative impact on percentage improvements (shown in Figure 12). Rate

of substitution γ1 and shortage cost σ1 have positive impact on optimal total inventory

costs in partial substitution, no impact on optimal total inventory cost in no substitution,

and has negative impact on percentage improvement in partial substitution (shown in

Figure 13). The results of sensitivity obtained for illustrative examples provide certain

management insights about the inventory problem studies. Under the phenomenon of

partial substitution, retailer/manager wishes to increase the percentage improvement in

total optimal cost so that substitution is beneficial. Since, demand and holding cost

of second item D2 and h2, rate of deterioration θ, cost of substitution CS12, rate of
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Figure 8: Sensitivity with respect to ordering costs.

Figure 9: Sensitivity with respect to demand rates.

Figure 10: Sensitivity with respect to usages rates of complementary components of item 1.

substitution γ1, and shortage cost σ1 are sensitive parameters due to their negative

impact on percentage improvements. So, retailer would control these sensitive parameters

so that phenomenon of substitution can be made beneficial.

Further, sensitivity graphs of optimal total inventory costs in partial substitution

and no substitution, and percentage improvements are shown in below figures.
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Figure 11: Sensitivity with respect to holding costs.

Figure 12: Sensitivity with respect to deterioration rate and cost of substitution.

Figure 13: Sensitivity with respect to rate of substitution and shortage cost.

Impact of changes in values of parameters of inventory model on optimum values is

given by Table 4.
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6.3. Managerial implications of the inventory model

Now a day’s manufacturing companies produce complementary items instead of sin-

gle item to get full utility. Even, some manufacturing companies produce complementary

as well as substitutable items to get best output. So, observing such aspects, with the

help of this inventory model, warehouse manager can increase the firm’s capability and

performance having the inventories of the items of those firms which produce two types

of substitutable items, where first is composed with two complementary components and

second item is assembled with two features as in first item so that substitution is easily

possible between both items. This model helps the managers of warehouses to take the

decisions for optimal order quantities of items by initializing the input parameters. This

inventory model brings a substantial cost saving versus traditional model.

7. Conclusions and Future Work

This paper considers an inventory decision model for two substitutable deteriorating

items, where one item is formed with two complementary components, by taking into

account the cost of substitution and considering stock-out partial substitution, two-way

substitution and joint replenishment policy. Two possible cases; partial substitution and

no substitution are discussed and solution procedures are presented for each situation of

all possible cases to compute the optimal order quantities and optimal total cost by con-

sidering the effect of deterioration and cost of substitution. In this paper, we determine

the optimal order quantities minimizing the total inventory cost. Pseudo-convexity of

total cost function has been demonstrated with respect to decision variables for search-

ing of the global optimal decision variables of this inventory model. Analysis of this

model reflects that order quantities with substitution save the inventory cost. Numerical

and sensitivity analysis are provided to validate the applicability and performance of

proposed inventory model.

Further, research is needed to generalize this paper for the multiple products. Also,

this inventory system can be generalized for all items consisting of complementary com-

ponents. Further, it can be extended in a different direction introducing stochastic

deterioration rate, stochastic demand, stochastic lead time etc.

Appendix 1(a). Showing pseudo-convexity of total cost functions (TCU1p)

Proof of Theorem 1. The total cost function per unit time (TCU1p) in situation (i)

for case of partial substitution is given by equation (4.28)

TCU1p =
θ

ln

(

θ(Q2a1+q1γ1)+a1(γ1D1+D2)
a1(γ1D1+D2)

)

[

(2A1+A2)

+
h1

θ2

(

θ(q1+
a2

a1
q1)−a1D1 ln

(θq1+a1D1

a1D1

)

− a2D1 ln

(θ a2
a1
q1+a2D1

a2D1

)

)
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+
h2

θ2

(

θQ2 − γ1D1 ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(D1 +D2)(θq1 + a1D1)

)

−D2 ln

(θ(Q2a1 + q1γ1) + a1(γ1D1 +D2)

a1(γ1D1 +D2)

)

)

+ CS12
γ1D1

θ
ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq1 + a1D1)

)

+ σ1(1− γ1)
D1

θ
ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq1 + a1D1)

)

]

.

This can be expressed as

TCU1p = TC1p

/





ln

(

θ(Q2a1+q1γ1)+a1(γ1D1+D2)
a1(γ1D1+D2)

)

θ



 .

Where,

TC1p =

[

(2A1+A2)+
h1

θ2

(

θ(q1+
a2

a1
q1)−a1D1 ln

(θq1+a1D1

a1D1

)

−a2D1 ln

(θ a2
a1
q1+a2D1

a2D1

)

)

+
h2

θ2

(

θQ2 − γ1D1 ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(D1 +D2)(θq1 + a1D1)

)

−D2 ln

(θ(Q2a1 + q1γ1) + a1(γ1D1 +D2)

a1(γ1D1 +D2)

)

)

+ CS12
γ1D1

θ
ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq1 + a1D1)

)

+ σ1(1− γ1)
D1

θ
ln

(θD1(Q2a1 + q1γ1) + a1D1(γ1D1 +D2)

(γ1D1 +D2)(θq1 + a1D1)

)

]

.

Here we have to show that (TCU1p) is pseudo-convex. For this, firstly we show that

(TC1p) is convex and use the fact that ratio of positive convex function and positive

concave function is pseudo-convex (see Cambibi and Martein [4] and Chandra [6]).

To show convexity of (TC1p), we must prove that its Hessian matrix is positive

definite. Hessian matrix of cost function (TC1p) is given as

H(q1, Q2) =









∂2TC1p

∂2q1

∂2TC1p

∂q1∂Q2

∂2TC1p

∂Q2∂q1

∂2TC1p

∂2Q2









.

For positive definiteness of the Hessian matrix H(q1, Q2), we prove that
∂2TC1p

∂2q1
> 0,

∂2TC1p

∂2Q2
> 0 and determinant of the Hessian matrix |H(q1, Q2)| > 0 i.e.

(∂2TC1p

∂2q1
∗
∂2TC1p

∂2Q2

)

−
(∂2TC1p

∂q1∂Q2

)2
> 0.
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Now,

∂2TC1

∂2Q2
=

a21h2D2 + a21D1

(

h2γ1 − θ(CS12γ1 + σ1(1− γ1))
)

(

(θq1 + a1D1)γ1 + a1(θQ2 +D2)
)2 > 0

if h2γ1 ≥ θ
(

CS12γ1 + σ1(1− γ1)
)

∂2TC1

∂q1∂Q2
=

a1γ1h2D2 + a1γ1D1

(

h2γ1 − θ
(

CS12γ1 + σ1(1− γ1)
)

)

(

(θq1 + a1D1)γ1 + a1(θQ2 +D2)
)2 (4.53)

(∂2TC1

∂2q1
∗
∂2TC1

∂2Q2

)

−
( ∂2TC1

∂q1∂Q2

)2

=

[

a21D1

(

h2D2+D1

(

h2γ1−θ(CS12γ1+σ1(1−γ1))
)

)(

h2(a1+a2)+
(

θ(CS12γ1

+σ1(1−γ1))−h2γ1
)

)]/[

(

(θq1+a1)γ1+a1(θQ2+D2)
)2
(θq1+a1D1)

2
]

> 0 (4.54)

if h2γ1 ≥ θ(CS12γ1 + σ1(1− γ1)) and h2γ1 ≤ θ
(

CS12γ1 + σ1(1− γ1)
)

.

From equations (4.53) and (4.54), it is clear that
∂2TC1p

∂2Q2
> 0 and

(∂2TC1p

∂2q1
∗

∂2TC1p

∂2Q2

)

−
(∂2TC1p

∂q1∂Q2

)2
> 0 simultaneously hold if h2γ1 = θ(CS12γ1 + σ1(1 − γ1)). For

h2γ1 = θ
(

CS12γ1 + σ1(1 − γ1)
)

,
∂2TC1p

∂2q1
> 0, Thus,

∂2TC1p

∂2q1
> 0,

∂2TC1p

∂2Q2
> 0 and

(∂2TC1p

∂2q1
∗
∂2TC1p

∂2Q2

)

−
(∂2TC1p

∂q1∂Q2

)2
> 0. So, TC1p is convex function.

It is also clear that









ln

(θ(Q2a1+q1γ1)+a1(γ1D1+D2)

a1(γ1D1 +D1)

)

θ









is positive convex function.

Using the fact described above, TCU1p is pseudo-convex.

This completes the proof of theorem.

Appendix 1(b). Showing pseudo-convexity of total cost functions (TCU2p)

Proof of theorem 2. Total cost functions (TCU2p) is given by equation (4.50) and

proof of theorem is similar to proof of Theorem 1.
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