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Abstract

We consider Markov decision model of production-inventory system with defective and

deteriorating items. Two cases of demand; random variable and price dependent are dis-

cussed. Our mathematical model discusses four strategies of production, and pricing strategy.

Production strategies includes with and without losing sales, and the mixed strategy. Our

aim is to determine the optimal policy of production and pricing strategy, thus maximizes

the expected average profit. Also, our model takes into account the effect of defective and

deteriorating products in the actual inventory. Numerical application and sensitivity analy-

sis are conducted. The results show a strategy without losing sales is the best compared with

other strategies. Meanwhile, other strategies can apply with limited production and capital.

The sell price is 250% of the unit cost leads to high profit compared with other prices.

Keywords: Production-inventory system, Markov decision model, defective and deterio-

rating products, stochastic demand, losing sales.

1. Introduction

An optimal production policy in one of the important factors of inventory system

that discussed in recent decades. Many factors affect on the system, such as demand, raw

materials, defective and deteriorating products. Practical, machine age and quality of

raw materials lead to some defective products. Also, product lifetime has an effect on the

real storage quantity due to some deterioration during storage period. The production

policy should make a balance between satisfying demand and lost sales to maximize the

profit.

Many researchers have developed mathematical models of inventory system with

stochastic demand. The Markov decision process (MDP) was wide discussed the inven-

tory system with stochastic demand. Yin et al. [33] determined the replenishment amount

of two distributions of the demand; normal and Exponential. They discussed two costs of

the inventory system; manufacturing and shortage. Jin et al. [13] investigated assembly

system with returned products according to a compound Poisson process. They classi-

fied remanufacturing products into many types, according to the quality. Multi-stage of
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production, limited production of every stage, and random lead time was investigated by

Vercraene and Gayon [31]. They discussed two options of return products; accept and

reject to determine the optimal level of base-stock. The same demand assumption of Jin

et al. [13], Ahiska and Kurtul [1] developed a hybrid manufacturing system with stochas-

tic returned products. They considered the sale price of remanufacturing is lower than

manufacturing product price. Determine the optimal order quantity of the milk powder

with l cost of order, holding and shortage in the supermarket, was studied by Mubiru

[20]. Feng et al. [10] studied system with many product, discount rate and neglect lead

time. The aim is to determine the replenishment policy with minimized the total cost.

Several researchers have developed other models of inventory system with stochastic

demand. Kim and Jeong [14] discussed buyer-supplier model with a single item in the

case of periodic review policy to determine the optimal cycle. Multistage inventory

system with setup cost, fixed lead time, continuous review policy and replenishment

policy (r,Q), was described by Hu and Yang [12].

Remanufacturing model with uncertain reprocessing amount and uncertain supply,

was discussed by Wen et al. [32] and Li et al. [17], respectively. The first one minimized

the total cost of the model with two-stage, multi-period and compensation function.

Meanwhile, the second one considered two strategies of remanufacturing and pricing.

Also, with remanufacturing system and uncertain, Fang, et al. [8] determined the opti-

mal strategy of operation. The aim is to minimize the total cost of holding, production,

remanufacturing, disposal and shortage. Two models of inventory system; optimal con-

trol and quadratic programming, with deterioration and limited inventory, was discussed

by Dhaiban [6]. More recently, Assid et al, [2] developed a control policy of production

and remanufacturing to determine the storage size of returned and new products.

A defective product is one of the important factors in the inventory system that

discussed by several researchers. Numbers of shipment for each production cycle, retail

price and lot size of the supplier-retailer model, was discussed by Soni and Patel [27].

EPQ model discussed by Farsijani et al. [9] and Sarkar et al. [25]. Farsijani et al. [9] de-

termined the optimal quantity of order and shipments of the system with many products

and repair defective products. They have taken into account and constant rate of repair-

ing defective items. Meanwhile, Sarkar et al. [25] compared three models of inventory

system with three defective rates. Three different distributions of the defective rate in

the case of single stage and backorders. Three rates of random defective also studied by

Priyan and Uthayakumar [24]. They established an inventory model to find the optimal

number of shipments from the vendor to the buyer, as well as lot size and setup cost.

Reduce the defective products with demand dependent price and investment depends on

quality improvement was studied by Datta [5]. Maintenance policy with defective prod-

ucts was investigated by Nobil and Sedigh [21] and Bouslah et al. [4]. Nobil and Sedigh

[21] determined the economic batch quantity and the optimal policy of maintenance. A

model with two-machine line and two choices of defective products; accept and reject

was addressed by Bouslah et al. [4]. More recently, Tayyab et al. [29] addressed fuzzy

demand, multi-stage production, single product, rework of defective products to. The

aim is to minimize the total cost of inspection, holding and order.
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Several researchers have addressed an inventory system with stochastic demand and

defective items. Two cases of defective products, and random demand that adhere to

normal and Exponential distribution, were addressed by Liu et al. [18] and Bhowmick

and Samanta [3], respectively. Kutzner and Kiesmller [15] studied periodic review policy

to minimize the total cost of inspection and backorder. MDP model of inventory sys-

tem with shortage and two strategies of disposal the defective items were discussed by

Dhaiban and Aziz [7].

Products are subject to deteriorate during storage due to several reasons, such as life-

time. Thus, the actual inventory that satisfies the demand will decrease. An inventory

system with deteriorating and defective products was addressed by a few researchers.

Many plant of production, single plant of reworking and compared two models was ad-

dressed by Tai [28]. Yu [34] discussed EOQ model with delay in payment and compen-

sation policy. Meanwhile, Lee and Kim [16] discussed the direct sell strategy of defective

items without storage in the distribution model. Screening process conduct by retailer

was discussed by Moussawi-haidar et al. [19], with backorder and discount selling price.

Uthayakumar and Tharani [30] developed rework model with (n, 1) policy, one cycle for

production setup, rework setup, and two types of demand. Several studies have discussed

inventory system with only deteriorating products. Weibull deterioration rate, shortage,

and deterministic demand, were investigated by Pervin et al. [23] and Sharma et al [26]

to determine the optimal replenishment policy and economic order quantity, respectively.

More recently, Patel [22] determined the best pricing strategy that maximize the profit

of the single product model.

The contribution of this paper is to formulate a Markov decision model of the produc-

tion - inventory system. Inventory system with defective, deterioration, and stochastic

demand. Moreover, the demand depends on the sell price and in the same time random

variable. The model determines the pricing strategy and the optimal production policy.

Four production policies; with losing sales, without losing sales and mixed strategy. The

production policies and pricing strategy are suitable with many practical situations. The

production capacity, capital, raw material, storage and so on, are effective factors on the

decision making. Sensitivity analysis was shown the effect of holding cost and losing sales

cost on the production policy. Table 1 shows our contribution compared other literature.

2. Production-Inventory System

2.1. Problem description

A production-inventory system in this paper can described as follows:

1. The company produces one product, and checking process happens direct for all

product units.

2. A specific percent of production is defective.
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Table 1: Summary of literature review.
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Yin et al. [23]
√ √ √ √ √

Jin et al. [13]
√ √ √ √

Vercraene and Gayon [31]
√ √ √ √ √

Mubiru [20]
√ √ √ √

Ahiska and Kurtul [1]
√ √ √ √

Feng et al. [10]
√ √ √ √ √

Kim and Jeong [14]
√ √ √

Hu and Yang [12]
√ √ √

Wen et al. [32]
√

Li et al. [17]
√ √ √ √

Fang et al. [8]
√ √ √

Dhaiban [6]
√ √ √ √ √

Assid et al. [2]
√ √ √

Farsijani et al. [9]
√ √ √

Soni and Patel [27]
√ √

Sarker et al. [25]
√ √ √ √

Priyan and Uthayakumar [24]
√ √ √ √

Datta [5]
√ √ √

Nobil and Sedigh [21]
√

Bouslah et al. [4]
√ √

Tayyab et al. [29]
√ √

Liu et al. [18]
√ √ √ √

Bhowmick and Samanta [3]
√ √ √ √ √

Kutzner and Kiesmller [15]
√ √ √

Dhaiban and Aziz [7]
√ √ √ √ √

Tai [28]
√ √ √ √

Yu [34]
√ √ √ √

Lee and Kim [16]
√ √ √

Moussawi-Haidar et al. [19]
√ √ √ √

Uthayakumar and Tharani [30]
√ √ √ √

Pervin et al. [23]
√ √ √

Sharma et al. [26]
√ √ √ √

Patel [22]
√ √ √

This article
√ √ √ √ √ √ √ √ √
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3. Products during storage are subject to deterioration by specific percent. Assumption

of deterioration by specific percent of inventory, due to the storage period does not

exceed one month.

4. Defective and deteriorating products dispose direct.

5. Two cases of demand; random variable and pricing dependent.

6. The production rate depends on the inventory level of the previous month with some

deteriorating products. Also depends on the demand of the current month, and the

defect percent.

7. The unit cost includes production, holding, disposal, check, and lost sales.

2.2. Notations

The following variables and parameters are used:

It : The inventory level at time t.

I0 : The initial inventory level at the beginning of the planning period.

Nt : The production rate that satisfies the demand.

Dt : The stochastic demand.

UDt : The upper limit of the demand.

LDt : The lower limit of the demand.

δ : The percentage of defective products.

ϑ : The percentage of deteriorated products.

Rt : The production cost.

Kt : The cost of the checking production.

Ht : The holding cost.

Lt : The disposing cost of the defective and deteriorated products.

Gt : The lost sales cost.

At : Sales.

O : The expected average profit.

3. Mathematical Model

3.1. Markov decision processes (MDP)

Markovian property to any stochastic process It is as follows (Hillier and Lieberman

[11]):

P{Ii+1 = j | I0 = k0, I1 = k1, . . . , It = i} = P{Ii+1 = j | It = i}. (3.1)
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According to the Markov property, the happen probability of future event depends

on present state, which means past events do not have any effect. Transition probabilities

in the Markov chain are as follows:

P{It+1 = j | It = i} = P{I1 = j | I0 = i} for all i, j, t. (3.2)

Eq. (3.2) represents transition probability for one-step, transition probabilities for n

steps is as follows:

P{It+n = j | It = i} = P{In = j | I0 = i} for all i, j, t,

P
(n)
ij = P{It+n = j | It = i}.

(3.3)

Transition probability must be greater than or equal to zero, and sum of transition

probabilities for any state must be equal to one. If transition probabilities stay constant

without change over time that means stationary transition probabilities are as follows:

p00 = p10 = p20 = · · · = pi0,

p01 = p11 = p21 = · · · = pi1,

.

.

.

p0j = p1j = p2j = · · · = pij.

(3.4)

The steady state probability γj represents a probability after many transitions, which

is becoming independent of the initial state probability.

lim
n→∞

P
(n)
ij = γj,

γj =

M
∑

i=0

γiPij

M
∑

j=0

γj = 1.

, j = 0, 1, 2, . . . ,M, (3.5)

For example, three states of transition probabilities, γj can be found by solving the

last three equations simultaneously:

γ0 = γ0p00 + γ1p10 + γ2p20,

γ1 = γ0p01 + γ1p11 + γ2p21,

γ2 = γ0p02 + γ1p12 + γ2p22,

1 = γ0 + γ1 + γ2.

(3.6)

3.2. Transition probabilities

Inventory level can be described by Eq. (3.7):

It+1 = It +Nt+1 −Dt+1. (3.7)
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Inventory level represented by the inventory level at the end of the last month addi-

tion to production rate, that subtracting from the monthly demand. Eq. (3.7) represents

the production-inventory system without defective and deteriorating items. Eq. (3.8)

represents the effect of defect products on the system:

It+1 = It + (1− δ)Nt+1 −Dt+1. (3.8)

By inserting the effect of the deteriorating items, Eq. (3.8) becomes as follows:

It+1 = (1− ϑ)It + (1− δ)Nt+1 −Dt+1. (3.9)

The production rate is described by the function of inventory. From Eq. (3.9), the

integer production rate (Int.) can be formulated as follows:

(1− δ)Nt+1 = Dt+1 − (1− ϑ)It,

INT.(Nt+1) =
Dt+1 − (1− ϑ)It

(1− δ)
.

(3.10)

The production rate must take into account defective and deteriorating products

to satisfy the demand. To determine the optimal production policy, we suggest four

strategies are as follows:

1. The production rate that satisfies the upper limit of the demand (S1), which means

without losing sales. Therefore, we can rewrite Eq. (3.10) as follows:

INT.(Nt+1) =
UDt+1 − (1− ϑ)It

(1− δ)
. (3.11)

2. The production rate that satisfies 85% of the upper limit of the demand (S2), which

means with a slight losing sales. Therefore, we can rewrite Eq. (3.10) as follows:

INT.(Nt+1) =
0.85 ∗ UDt+1 − (1− ϑ)It

(1− δ)
. (3.12)

3. The production rate that satisfies 75% of the upper limit of the demand (S3), which

means with a significant losing sale. Therefore, we can rewrite Eq. (3.10) as follows:

INT.(Nt+1) =
0.75 ∗ UDt+1 − (1− ϑ)It

(1− δ)
. (3.13)

4. Mixed strategy (S4) that apply S1, S2 and S3 at the beginning, middle, and end of

the planning period, respectively.

The demand is a random variable with a probability distribution. The losing sales

happen when the demand exceeds the production and inventory.

Dn+1 > (1− ϑ)It + (1− δ)Nt+1. (3.14)
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A transition probability matrix can be written as follows (three state):

P =





State 0 1 2

0 p00 p01 p02
1 p10 p11 p12
2 p20 p21 p22



 (3.15)

An inventory level is described as a probability level because of the stochastic de-

mand. Therefore, Eq. (3.15) represents the inventory transition probabilities from one

state to another. For example, p12 represents an inventory transition probability from

state 1 to state 2.

4. Expected Average Profit of the System

Expected average profit can be found by subtracting the expected average cost from

the expected average sales.

4.1. Expected average cost of the system

Suppose Ct represents the system cost in the state t. Ct is a random variable and

the expected average cost is as follows:

E
[

1

n

n
∑

t=1

Ct

]

. (4.1)

The expected average cost of the system includes production, checking, holding,

disposal and losing sales:

C = C(Rt,Kt,Ht−1, Lt,Dt). (4.2)

Markov chain in the case of finite-state satisfy the following equation:

lim
n→∞

(

1

n

n
∑

k=1

p
(k)
ij

)

= γj . (4.3)

Then, the expected average cost can be written as follows:

lim
n→∞

E
[

1

n

n
∑

t=1

C(Rt,Kt,Ht−1, Lt,Dt)

]

=

m
∑

j=0

µjγj (4.4)

where µj = E[C(Rt,Kt,Ht−1, Lt,Dt)].

The losing sales cost happen when the demand exceeds the actual production and

inventory:

p{(Dt+1 =(1− ϑ)It + (1− δ)Nt+1 + 1)}

+ 2p{Dt+1 = (1− ϑ)It + (1− δ)Nt+1 + 2}

+ 3p{Dt+1 = (1− ϑ)It + (1− δ)Nt+1 + 3}+ · · · . (4.5)
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4.2. Expected average sales of the system

The expected average sales can be written as follows:

lim
n→∞

E
[

1

n

n
∑

t=1

At

]

=

m
∑

j=0

ψjγj (4.6)

where ψj = E(At).

From Eqs. (4.4) and (4.6), we can write the expected average profit as follows:

O =

m
∑

j=0

ψjγj −

m
∑

j=0

µjγj. (4.7)

5. Numerical Application and Sensitivity Analysis

5.1. Case 1: The stochastic demand

5.1.1. Numerical application

Consider an inventory system with the following parameter values:

• The production cost r = 10$ per unit.

• The holding cost is equal to 20% from production cost, h = 0.2 ∗ 10 = 2$ per unit.

• The production checking cost is equal to 5% from production cost, k = 0.05∗10 = 0.5$

per unit.

• The sale price is equal to 300% from production cost, a = 3 ∗ 10 = 30$ per unit.

• The disposal cost is equal to 5% from the sale price, l = 0.05 ∗ 30 = 1.5$ per unit.

• The losing sales cost is equal to 25% from the sale price, g = 0.25 ∗ 30 = 7.5$ per

unit.

• The defective percentage δ = 0.1.

• The deterioration percentage ϑ = 0.2.

The unit cost is 14$ without losing sales, and 21.5$ with losing sales. The demand

is a random variable, according the following probability distribution (see Table 2):

According to the demand, we can divide inventory level to the six states as follows:

1. The First Strategy (S1)

The first strategy represents satisfy the upper limit of demand, which means without

losing sales. From Table 2, the upper limit of demand is 100 units, so the production

rate can be found from Eq. (3.11) as follows:

N(0) =
100 − 0.8(0)

0.9
= 112. (5.1)
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Table 2: The probability distribution of demand.

Demand Pr(D)
∑

Pr(D)

50∼58 0.012 0.108

59∼72 0.014 0.196

73∼85 0.027 0.351

86∼94 0.025 0.225

95∼100 0.02 0.12

Table 3: States of the inventory level.

State 0 1 2 3 4 5

Inventory 0 1∼5 6∼14 15∼27 28∼41 42∼50

Eq. (5.1) represents the production rate is (112) units when the inventory level is

zero without deteriorating units and (12) defective units. For state 1, the production

rate is as follows:

Nl(1) =
100 − 0.8(5)

0.9
= 106; Nu(1) =

100 − 0.8(1)

0.9
= 110. (5.2)

Eq. (5.2) represents the low production rate Nl(1) is (106) units when the inventory

level is (5) with one deteriorating unit and (10) defective units. The high production rate

Nu(1) is (110) units when the inventory level is (1) without deteriorating unit and (11)

defective units. Table 4 shows the production rate, deteriorating, defective and actual

inventory for all states:

Table 4: Inventory level and production rate (S1).

State ϑI (1− ϑ)I Nl Nu δNl δNu (1 − δ)Nl (1− δ)Nu

0 0 0 112 112 12 12 100 100

1 0∼1 1∼4 106 110 10 11 96 99

2 1∼3 5∼11 99 106 10 11 89 95

3 3∼5 12∼22 87 98 9 10 78 88

4 5∼8 23∼33 75 86 8 9 67 77

5 8∼10 34∼40 67 74 6 8 60 66

The transition matrix of inventory level depends on the demand, which means states

represents inventory and figures inside the matrix represent the demand (see Tables 5 &

6).
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Table 5: The Transition matrix of inventory level (S1).

State 0 1 2 3 4 5

0 100 95∼99 86∼94 73∼85 59∼72 50∼58

1 100 95∼99 86∼94 73∼85 59∼72 50∼58

2 100 95∼99 86∼94 73∼85 59∼72 50∼58

3 100 95∼99 86∼94 73∼85 59∼72 50∼58

4 100 95∼99 86∼94 73∼85 59∼72 50∼58

5 100 95∼99 86∼94 73∼85 59∼72 50∼58

Table 6: The transition probability matrix (S1).

State 0 1 2 3 4 5

0 0.02 0.1 0.225 0.351 0.196 0.108

1 0.02 0.1 0.225 0.351 0.196 0.108

2 0.02 0.1 0.225 0.351 0.196 0.108

3 0.02 0.1 0.225 0.351 0.196 0.108

4 0.02 0.1 0.225 0.351 0.196 0.108

5 0.02 0.1 0.225 0.351 0.196 0.108

Probabilities in Table 6 are found from the demand, such as p01 = 0.1 is equal

to the total of demand probabilities from 95 to 99 units. The total of production and

inventory (excluding defective and deteriorating products) must be equal to the upper

limit of demand at any inventory state. Transition probabilities in the Table 6 represent

the steady state probabilities that found by two iterations. Therefore, the steady state

probability γj is as follows:

γ0 = 0.02; γ1 = 0.1; γ2 = 0.225; γ3 = 0.351; γ4 = 0.196; γ5 = 0.108.

From Eq. (4.2), we can find the expected average cost:

µj = N ∗ r +N ∗ k + I ∗ h+ l ∗ (ϑI + δN).

We take the integer average of inventory, production, deteriorating and defective for

every state in Table 4, the expected average cost is:

µ0 = 112(10) + 112(0.5) + 0(2) + 12(1.5) = 1194,

µ1 = 109(10) + 109(0.5) + 3(2) + 13(1.5) = 1170.
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From Eq. (4.4), the expected average cost (monthly) is as follows:

m
∑

j=0

µjγj = 0.02∗1194+0.1∗1170+0.255∗1123+0.351∗1039.5+0.196∗944.5+0.108∗861.5

= 1036.6$.

From Eq. (4.6), the expected average sales (monthly) is as follows:

ψ0 = A0 ∗ a = 100 ∗ 30 = 3000

ψ1 = A1 ∗ a = 97 ∗ 30 = 2910

ψ2 = 2700; ψ3 = 2370; ψ4 = 1980; ψ5 = 1620

m
∑

j=0

ψjγj = 0.02∗3000+0.1∗2910+0.255∗2700+0.351∗2370+0.196∗1980+0.108∗1620

= 2353.4$.

From Eq. (4.7), the expected average profit is as follows:

O = 2353.4 − 1036.6 = 1316.8$

2. The Second Strategy (S2)

The second strategy represents satisfy 85% of the upper limit of demand, which

means with slight losing sales. The production rate can be found from Eqs. (3.11) and

(3.12) as follows:

N(0) =
85− 0.8(0)

0.9
= 95;

Nl(1) =
85− 0.8(5)

0.9
= 90; Nu(1) =

85− 0.8(1)

0.9
= 94.

From Eq. (3.11), the losing sales happen when the demand is greater than 85. In-

ventory states will become seven states after adding state 6 that represents the losing

sales. Table 7 shows the production rate, deteriorating, defective and actual inventory

for all states:

Table 7: Inventory level and production rate (S2).

State ϑI (1− ϑ)I Nl Nu δNl δNu (1− δ)Nl (1− δ)Nu

0 0 0 95 95 10 10 85 85

1 0∼1 1∼4 90 94 9 10 81 84

2 1∼3 5∼11 82 89 8 9 74 80

3 3∼5 12∼22 70 81 7 8 63 73

4 5∼8 23∼33 58 69 6 7 52 62

5 8∼10 34∼40 50 57 5 6 45 51

6 0 < 0 95 95 10 10 85 85
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Transition probabilities represent the steady state probabilities. That is due to the

fact that the total of production and inventory (excluding defective and deteriorating

products) must be equal 85, so Tables (8 & 9) include one row, which itself can be repeat

to other rows (states).

Table 8: The Transition matrix of inventory level (S2).

State 0 1 2 3 4 5 6

0 85 80∼84 71∼79 58∼70 50∼57 > 85

Table 9: The transition probability matrix (S2).

State 0 1 2 3 4 5 6

0 0.027 0.135 0.217 0.18 0.096 0.345

γ0 = 0.027; γ1 = 0.135; γ2 = 0.217; γ3 = 0.18; γ4 = 0.096; γ5 = 0; γ6 = 0.345.

The empty cells in Tables 8 and 9 means cannot inventory move from state to

another. Probabilities of state 6 are found by subtracting the total of probabilities in

each row from one, for example:

p06 = 1− (0.027 + 0.135 + 0.217 + 0.18 + 0.096) = 0.345.

From Eq. (4.4), we can find the expected average cost:

µj =N ∗ r +N ∗ k + I ∗ h+ l ∗ (ϑI + δN)

+ g{Pr(D = 86) + 2Pr(D = 87) + · · ·+ 15Pr(D = 100)}

µ0 =95(10) + 95(0.5) + 0(2) + 10(1.5) + 7.5{0.025 + 2(0.025) + 3(0.025) + 4(0.025)

+ 5(0.025) + 6(0.025) + 7(0.025) + 8(0.025) + 9(0.025) + 10(0.02) + 11(0.02)

+ 12(0.02) + 13(0.02) + 14(0.02) + 15(0.02)} = 1032.2

m
∑

j=0

µjγj =0.027∗1032.2+0.135∗1008.2+0.217∗961.2+0.18∗877.7+0.096∗782.7

+0.345∗1032.2 = 961.8$.

From Eq. (4.6), the expected average sale (monthly) is as follows:

m
∑

j=0

ψjγj =0.027∗2550+0.135∗2460+0.217∗2250+0.18∗1920+0.096∗1620+0.345∗2550

=2270.1$
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From Eq. (4.7), the expected average profit is as follows:

O = 2270.1 − 961.8 = 1308.3$.

3. The Third Strategy (S3)

The third strategy represents satisfy 75% of the upper limit of demand, which means

with significant losing sales. The production rate can be found from Eqs. (4.11) & (4.13)

as follows (see Table 10):

N(0) =
75− 0.8(0)

0.9
= 84;

Nl(1) =
75− 0.8(5)

0.9
= 79; Nu(1) =

75− 0.8(1)

0.9
= 83.

Table 10: Inventory level and production rate (S3).

State ϑI (1 − ϑ)I Nl Nu δNl δNu (1− δ)Nl (1− δ)Nu

0 0 0 84 84 9 9 75 75

1 0∼1 1∼4 79 83 8 8 71 75

2 1∼3 5∼11 71 78 7 8 64 70

3 3∼5 12∼22 59 70 6 7 53 63

4 5∼8 23∼33 47 58 5 6 42 52

5 8∼10 34∼40 39 46 4 5 35 41

6 0 < 0 84 84 9 9 75 75

Tables (11 & 12) include one row, which itself can be repeat to other rows (states).

Table 11: The transition matrix of inventory level (S3).

State 0 1 2 3 4 5 6

0 75 70∼74 61∼69 50∼60 > 75

Table 12: The transition probability matrix (S3).

State 0 1 2 3 4 5 6

0 0.027 0.096 0.126 0.136 0.615

γ0 = 0.027; γ1 = 0.096; γ2 = 0.126; γ3 = 0.136; γ4 = 0; γ5 = 0; γ6 = 0.615.
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From Eq. (4.4), we can find the expected average cost:

µj =N ∗ r +N ∗ k + I ∗ h+ l ∗ (ϑI + δN)

+ g{Pr(D = 76) + 2Pr(D = 77) + · · ·+ 25Pr(D = 100)}

µ0 =84(10) + 84(0.5) + 0(2) + 9(1.5) + 7.5{0.027 + 2(0.027) + 3(0.027)

+ 4(0.027) + 5(0.027) + 6(0.027) + 7(0.027) + 8(0.027) + 9(0.027) + 10(0.027)

+ 11(0.025) + 12(0.025) + 13(0.025) + 14(0.025) + 15(0.025) + 16(0.025)

+ 17(0.025) + 18(0.025) + 19(0.025) + 20(0.02) + 21(0.02) + 22(0.02)

+ 23(0.02) + 24(0.02) + 25(0.02)} = 952.2

m
∑

j=0

µjγj =0.027∗1032.2+0.135∗1008.2+0.217∗961.2+0.18∗877.7+0.096∗782.7

+0.345∗1032.2 = 961.8$.

From Eq. (4.6), the expected average sale (monthly) is as follows:

m
∑

j=0

µjγj =0.027∗952.2+0.096∗926.7+0.126∗881.2+0.136∗797.7+0.615∗952.2 = 919.8$

From Eq. (4.6), the expected average sale (monthly) is as follows:

m
∑

j=0

ψjγj =0.027∗2250+0.096∗2160+0.126∗1950+0.136∗1650+0.615∗2250 = 2122$

From Eq. (4.7), the expected average profit is as follows:

O = 2122 − 919.8 = 1202.2$.

4. The Fourth Strategy (S4)

The fourth strategy represents a mixed strategy with applying all strategies. For

example, planning period length is six months, so we apply S1 in the first two months,

S2 at the third and fourth month, and S3 at the last two months.

The expected average cost of six months is as follows:

2 ∗ 1036.6 + 2 ∗ 961.8 + 2 ∗ 919.8 = 5836.3$.

The expected average sale of six months is as follows:

2 ∗ 2353.4 + 2 ∗ 2270.1 + 2 ∗ 2122 = 13491$.

The expected average profit of six months is as follows:

13491 − 5836.3 = 7654.7$.



368 ALI KHALEEL DHAIBAN

The expected average profit of six months for S1, S2 and S3 are 7900.9$, 7849.9$

and 7213.2$, respectively.

The simulation results show the expected average cost of the third strategy (S3) is

lower than other strategies. That is due to the fact a lower rate of production. Meanwhile,

the expected average sales and profit of the first strategy (S1), without losing sales, is

higher than other strategies. In general, S1 is the best strategy as shown in Figure

1 due to it satisfies the demand, thus increase the profit. The first strategy needs to

unlimited available of capital, production rate, raw materials, good machines and so on.

Meanwhile, using other strategies based on available amount of above-mentioned factors.

Figure 1: Expected averages of cost, sales and profit for all strategies.

5.1.2. Sensitivity analysis

In this section, we show the effect of changing the holding cost from 20% to 40%

(2to4) of the production cost (Figure 2), losing sales cost from 25% to 50% (7.5to15) of

the sale price (Figure 3), and two changes together (Figure 4).

Storage amount of all strategies still without change, thus the change only in the

expected average cost. The expected average cost of (S2) is less than (S1). Thus, the

second strategy (S2) with a slight losing sale becomes the best strategy, according to the

expected average profit as shown in Figure 2.

Figure 3 shows S1 still is the best strategy, according to the expected average profit.

That is due to the expected average cost of S1 still without change, strategy without

losing sales. Meanwhile, there is a slight increase in the expected average cost of other

strategies. The third strategy (S3) has a higher losing sales product than other strategies.

Thus, increasing in the expected average cost of it is higher than other strategies.

The third strategy (S3) still the worst strategy, according to the expected average

profit, despite it has the lowest expected average cost than other strategies as shown in

Figure 4.
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Figure 2: Expected averages of cost, sales and profit by changing of the holding cost.

Figure 3: Expected averages of cost, sales and profit by changing of lost sales cost.

Overall, the changing in the holding cost leads to slight losing sales is better than

without losing sales. Numerical application focused on the suggested costs as a percent of

production cost and sales price, thus flexible in applying model on the different industry

fields.

5.2. Case 2: The pricing strategy

In this case, the demand is price dependent and in the same time is a random variable

as shown in Table 13:

From Table 13, the demand depends on the sell price, so the demand divided into

three categories. The categories represent sell price 300%, 250%, and 200% of the unit

cost, respectively. Practically, the high sell price leads to decrease sells, and vice versa.

We take into consideration the first strategy only with the same production rates.

Thus, the transition matrix of inventory level of the third category is as follows:
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Figure 4: Expected averages of cost, sales and profit by changing of holding and lost sales costs.

Table 13: The probability distribution of demand (Case 2).

Demand Pr(D)
∑

Pr(D) a Categories

50∼58 0.111 1 42 1

59∼72 0.026 0.358 35 2

73∼85 0.049 0.642 35

86∼94 0.072 0.652 28 3

95∼100 0.058 0.348 28

Table 14: The transition matrix of inventory level (case 2 (3)).

State 0 1 2

0 100 95∼99 86∼94

1 100 95∼99 86∼94

2 100 95∼99 86∼94

Table 15: The transition probability matrix (case 2 (3)).

State 0 1 2

0 0.058 0.29 0.652

1 0.058 0.29 0.652

2 0.058 0.29 0.652
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The expected average cost (monthly cost)
∑m

j=0 µjγj =

m
∑

j=0

µjγj = 0.058 ∗ 1192.8 + 0.29 ∗ 1168.7 + 0.652 ∗ 1121.7 = 1135.5$.

The expected average sale (monthly) is as follows:

m
∑

j=0

ψjγj = 0.058 ∗ 2800 + 0.29 ∗ 2716 + 0.652 ∗ 2520 = 2593.1$.

The expected average profit is as follows:

O = 2593.1 − 1135.5 = 1453.6$.

The transition matrix of inventory level of the second categories is as follows:

Table 16: The transition matrix of inventory level (case 2 (2)).

State 1 2

1 73∼85 59∼72

2 73∼85 59∼72

Table 17: The transition probability matrix (case 2 (2)).

State 1 2

1 0.642 0.358

2 0.642 0.358

The expected average profit (monthly) is as follows:

O =

m
∑

j=0

ψjγj −
m
∑

j=0

µjγj = (0.642 ∗ 2765 + 0.358 ∗ 2310) − (0.642 ∗ 1043 + 0.358 ∗ 948.5)

= 1592.9$

The expected average profit (monthly) of the first categories is as follows:

O =

m
∑

j=0

ψjγj −
m
∑

j=0

µjγj = 2268 − 871.1 = 1396.9$.

Figure 5 shows the expected averages of cost, sales and profit of three categories.

From Figure 5, the best sell price is 250% of the unit cost (C2). This means the

monthly demand is between 59 and 85 units. Meanwhile, the third category (C3) rep-

resents the highest cost due to the high amount of production compared with other
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Figure 5: Expected averages of cost, sales and profit of the case 2.

categories. Choosing the pricing strategy depends also on the desire of the decision

maker. More sales with a low profit or a high profit on account of the amount of sales.

6. Conclusion

In this paper, we studied a production-inventory system with defective and deterio-

rating items. Periodic review policy and Two cases of demand, were discussed; random

variable and pricing dependent. We formulated a Markov decision model to describe the

transition probabilities of the inventory level. Four production strategies were suggested;

with losing sales, without losing sales, and mixed strategy. Defective and deteriorating

products were disposed direct without rework. Also, check process was conducted on all

product units. The expected average cost of the system included production, checking,

holding, disposal and lost sales. The expected average profit and pricing strategy were

determined.

Numerical application with suggested costs as a percent of production cost and sales

price was conducted. Thus, flexible in applying model on different industry fields. The

numerical results show arrange of strategies, according to the expected average profit.

The arrangement is S1 (without lost sales), S2 (with slight lost sales), S4 (mixed), and

the last strategy S3 (with significant lost sales). Choosing the production strategy not

only depend of profit, but on production factors available. The effect of changing the

holding cost, losing sales, as well as holding and losing sales together was illustrated.

Sensitivity analysis shows the arrangement of strategies was affect by changing the hold-

ing cost. Meanwhile, the change in the losing sales cost led to decrease the expected

average profit. The pricing strategy with random demand clarified the moderate price is

better than high and low price. This work can extend to discuss the stochastic defective,

reworking defective and deterioration products, and limited production and storage.
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