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Abstract

This paper considers the online retailer’s omni-channel retail operations under reference

point effects in which consumers can cancel their orders before payment and return the

products after payment if the products doesn’t meet their expectation. The online retailer’s

optimal pricing and inventory decisions are derived under the omni-channel strategy by

maximizing the total expected utility. The analysis reveals a threshold strategy on the

retailer’s optimal pricing and inventory decisions and the optimal total expected utility

while considering the impact of reference point effects. Moreover, with the increase of the

retailer’s loss aversion or the optimism level, the order quantity and overall expected utility

decrease, while the optimal price presents a threshold type. Finally, the comparison of the

utility performance between with and without reference point effects is presented.

Keywords: Omni-channel, pricing-inventory management, consumer returns, consumer

order cancellation, reference point effects.

1. Introduction

With the vigorous development of mobile Internet in recent years, the business model

based on Internet is rapidly replacing the traditional business model with physical and of-

fline channels. The way of communication between retailers and consumers has changed

dramatically. In order to improve the probability of successful marketing and increase

market share, many traditional retailers based on brick-and-mortar have developed a

series of new retail models, such as online, mobile phone, email, QQ, etc. A new re-

tail model that opens up various channels, “omni-channel retail” came into being. For

instance, facing the competition from JD.com, both Suning and Gome, the two largest

traditional physical home appliance retailers in China, launched their online businesses

in 2009. Additionally, the world-famous e-commerce retailers, such as Amazon, Google

and eBay etc., have also built their tech-enabled physical stores. Omni-channel retail

focuses on “a truly integrated approach across the whole retail operation that delivers a
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seamless response to the consumer experience through all available shopping channels”

(see Rigby [27] and Saghiri et al. [28]). Therefore, omni-channel business is becoming

more and more pervasive as consumers tend to switch between online and offline channels

and exhibit higher levels of satisfaction and loyalty (see Wallace et al. [34]). This not

only brings unprecedented opportunities to retailers, but also brings new challenges to

their pricing and inventory optimization, for instance, traditional pricing and inventory

models optimize channel prices under the assumption that there is no inventory shar-

ing between channels. But this assumption doesn’t valid in omni-channel with which

physical store inventory is used for fulfilling customer orders placed online. Thus, from

academic and practical perspectives, it is necessary to investigate the coordination of

pricing and inventory decisions in omni-channel retail environment.

Studies on omni-channel retailing are emerging, most of which are exploratory. At

present, the omni-channel research mainly focuses on the following aspects, channel con-

flicts and synergies (see Kim and Chun [19], Lee et al. [20] and Wiener et al. [37]); con-

struction and evaluation of omni-channel distribution and logistics system (see Hübner

et al. [13, 14] and Murfield et al. [24]); channel choices of omni-channel consumers (see

Gao et al. [6] and Park and Lee [25]); purchasing behavior of omni-channel consumers

(see Blom et al. [2], Hosseini et al. [12], Shen et al. [30] and Yurova et al. [40]) and

order fulfillment for omni-channel consumers (see Ishfaq and Raja [15] and Wollenburg

et al. [38]). The studies that are closely related to ours are those of omni-channel pric-

ing and inventory models. As omni-channel retailing is a relatively new area, there are

few academic papers on optimization of omni-channel pricing and inventory operations,

especially on joint pricing and inventory. For example, omni-channel pricing strategy

(see Gao and Su [5], Halzack [7], Harsha et al. [9], Jin et al. [16] and Matthews [23]);

omni-channel inventory strategy (see Gallino et al. [4] and Kembro et al. [18]); omni-

channel joint pricing and inventory strategy (see Zhang et al. [41]). Among them, the

most related work to ours is Zhang et al. [41], in which the authors consider the joint

optimal pricing and inventory control problem for a omni-channel system with consumer

returns and order cancellation. The difference between ours and Zhang et al. [41] is that

we consider the retailer’s behavior, i.e., reference point and loss aversion.

Recent studies on prospect theory and behavioral science have recognized that de-

cision makers are subject to anchoring effects, i.e., the cognitive bias, which has an

important impact on the behavior of decision makers to make judgement that biased

towards an initially presented value (see Kahneman and Tversky [17]). In a seminal

experimental work, Schweitzer and Cachon [29] showed that the realized order quantity

of the decision maker often violates that of expected profit maximizing, and they intro-

duced loss aversion (i.e., the losses result in larger disutility as compared to the utility

gain of the same magnitude) in the prospect theory to explain such a deviation by relying

on the risk attitudes toward gains and losses. However, they found that prospect the-

ory cannot systematically explain the ordering behavior observed in experiments. The

reason is that they ignored the non-zero reference point (i.e., non-zero reference payoff).

The non-zero reference point acts as the decision maker’s optimization objective towards

realized profit, which depends on his/her decisions. Long and Nasiry [21] proposed an
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alternative based on newsvendor’s non-zero reference point and showed that prospect

theory can, in fact, account for the experimental results by considering such a non-zero

reference point. In our daily lives, when one retailer makes decisions, the decision maker’s

valuation of a particular option actually relies on relative gain or loss from an expectation

level. Hence, the reference point and loss aversion are reasonably included as another

factors impacting retailers’ pricing and ordering decisions.

To our best knowledge, previous researchers, either through experimental work or

through analytical modeling work, have studied the impact of reference point and loss

aversion when the retailer is only making the pricing decisions (see Baron et al. [1] and

Heidhues and Koszegi [10]) or the inventory decisions (see Baron et al. [1], Long and

Nasiry [21], Shi et al. [31], Vipin and Amit [33], Wang et al. [36] and Xu et al. [39]).

However, only a few papers have jointly investigated reference point and loss aversion in

the coordination of pricing and inventory problem (see Mandal et al. [22]). Moreover,

recent research on omni-channel pricing and inventory ignores the reference point and

loss aversion (see Zhang et al. [41]). So the following technical problems will arise: (1)

Does the optimal pricing and ordering strategies in omni-channel retail environment

under reference point and loss aversion exist? If exist, are they unique? (2) How does

the reference point and loss aversion influence the pricing and order quantity of a loss

averse retailer with reference point? (3) How does the reference point and loss aversion

affect the optimal pricing and inventory decisions?

To tackle these technical questions, we develop a online retailer’s omni-channel retail

operation model under reference point and loss aversion in which consumers can cancel

their orders before payment and return the products after payment if the products does

not meet their expectation. The online retailer’s optimal pricing and inventory decisions

are derived under the omni-channel strategy by maximizing the total expected utility.

The analysis reveals a threshold strategy on the retailer’s optimal pricing and inventory

decisions as well as the optimal total expected utility while considering the impact of

reference point effects. Moreover, our analysis also shows that the order quantity and

overall expected utility decrease with the increase of the retailer’s loss aversion or the

level of optimism, while the optimal price presents a threshold type. Finally, we compare

the performance between considering and not considering the reference point effects.

We also identify the conditions under which the retailer benefits from the omni-channel

retailing strategy under reference point effects. Thus, we contribute to the literature

by studying the impact of human decision biases on the retailer’s pricing and inventory

strategies in omni-channel retail setting.

The rest of the paper is organized as follows. In section 2, we present a theoretical

model to formulate the omni-channel under reference point effects as well as the con-

sumer behavior under different channels. In Section 3, we explore the optimal decisions

with reference point effects under the omni-channel strategy. Section 4 investigates the

performance of adding reference point effects. Section 5 concludes our paper. We present

all the proofs in Appendix.
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2. Model description

2.1. Modeling the omni-channel under reference point effects

Consider a retailer, initially an online retailer, who previously operated a single online

channel that only allowed consumers to shop online directly. Currently, the retailer has

added a physical store and will implement a new sales strategy, i.e., the omni-channel

strategy, which allows consumers to place orders online without paying immediately.

With this allowance, a consumer who places an order online can choose to (i) pay online

and wait for the package delivered, or (ii) reserve online in advance without payment,

then visit the physical stores to touch and feel the product, and finally pay and pick

up it (i.e., “ROPS” mode). The buying procedure of a consumer who orders online is

depicted in Figure 1, where 1−α and α be the fractions of consumers who choose to (i)

and (ii), respectively.

Figure 1: Buying procedure of a consumer who orders online under the omni-channel environment.

As shown in Figure 1, after placing an order online, if a consumer chooses to (i),

the consumer knows the exact value of the product only after receiving it. If the actual

value doesn’t meet his/her expectation, he/she can return the product with a full refund

(Choi and Guo [3]), but he/she needs to pay the return shipping fee for each unit of

the product (Pei et al. [26]). Suppose the forward shipping fee is paid by the retailer

while the return shipping fee is paid by the consumer and the express company charges

the same shipping fee m for both of them. If an online consumer chooses to (ii), he/she

needs to pay a travelling cost t (t > 0) to visit the store, and then decides whether to

keep the product or cancel the order in store. The cancellation of the orders doesn’t pay

anything. Moreover, assume that there is an additional profit b from every consumer

visiting the store (UPS [32]).

In omni-channel environment, the retailer charges the same price p over the physical

and online channels. The inventory is shared across channels (Harsha and Subramanian
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[8]), thus, there is a single decision Q to be made before demand is realized. The purchase

cost is c per unit, s is the salvage value per unit satisfying p > c > s, and shortage cost

is not considered. Let v be the consumer’s valuation for the product which is random

and follows the cdf G(·) (also the pdf g(·)). Without loss of generality, we assume that

v > c.

The aggregate market demand X under the omni-channel strategy is random which

is continuously distributed over [x, x] ⊂ R+ and follows the cdf F (·) (also the pdf f(·)).

F (·) and f(·) are differentiable over [x, x]. Let k (0 < k < 1) be the fraction of the

demand served under the single online channel, then the demand was kX when the

retailer used to operate a single online channel. However, the omni-channel strategy will

lead to an incremental demand (1− k)X for the retailer from both the online and offline

channels (Zhang et al. [41]). Let β and 1−β be the fractions of the incremental demand

coming from the online and the offline market, respectively.

In this paper, the retailer is assumed to be loss-averse (more sensitive to losses than

gains). Similar loss aversion has been modeled in the operations management literature

by Herweg [11] and Long and Nasiry [21]. Following Mandal et al. [22], Schweitzei and

Cachon [29] and Wang and Webster [35], to characterize the retailer’s loss aversion, we

introduce the piecewise-linear gain-loss utility function which is expressed by

ν(y) =

{

ηy, y ≥ 0,

ληy, y < 0,
(2.1)

where y is the difference between the realized payoff and reference payoff level (defined

in (2.2) below). η captures the strength of the reference point effects. A higher value of

η indicates a higher degree of sensitiveness to the deviations from the reference point,

η = 0 represents having no reference point effects. λ ≥ 1 is the loss aversion coefficient,

i.e., the retailer is loss averse if λ > 1, and loss neutral if λ = 1.

This paper focuses on finding the optimal pricing and order quantity to maximize

the retailer’s total expected utility. Following the similar setting of the expected utility

provided by Herweg [11] and Mandal et al. [22]. The total expected utility we consider

consists of two components: intrinsic expected utility and gain-loss expected utility. The

intrinsic expected utility component corresponds to the realized profit without consider-

ing the loss aversion, whereas, the gain-loss expected utility component corresponds to

the psychological value of the profit, determined by (2.1), i.e., comparing the actual profit

to a reference payoff level r(p,Q), given that the retailer’s price p and order quantity Q.

Based on this, the retailer’s total utility, denoted by Ur(X, p,Q), is given by

Ur(X, p,Q) = π(X, p,Q) + ν(π(X, p,Q) − r(p,Q))

= π(X, p,Q) − λη[r(p,Q)− π(X, p,Q)]
+
+ η[π(X, p,Q) − r(p,Q)]

+
(2.2)

where z+ = max{z, 0}.

The first component of (2.2), π(X, p,Q), i.e., the retailer’s profit, is the intrinsic

utility. The second term, λη[r(p,Q) − π(X, p,Q)]
+
, is the first sub-component of the
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gain-loss utility function, which emerges due to the loss aversion and the reference bias

of the retailer. Finally, the third term, η[π(X, p,Q) − r(p,Q)]
+
, is the second sub-

component of the gain-loss utility function, which emerges only due to the reference bias

of the retailer.

2.2. Consumer behavior under different channels

In omni-channel retail environment, the exact inventory information is available to

the consumers when they place orders online, and they will not order the product for

those out of stock. Hence, a consumer who places an order online doesn’t suffer a utility

loss from the stock-out risk. In addition, the inventory is shared across channels. Thus,

on one side, consumers can choose any channel to buy the product according to their

preference. On the other, the retailer has the ability to fulfill a transaction from both

channels. Table 1 shows the utility of a consumer at different trading times for both

online and offline payment under the omni-channel strategy.

Table 1: Consumer utility under two different channels.

Demand source Purchase channels
At the time of At the time of receiving

placing the order the product

Place order
Keep (Buy)

product

Return product/

Cancel order/

Leave store

Online consumers Buy online directly −p v − p −m
ROPS 0 v − p− t −t

Offline consumers Buy offline directly 0 v − p− t −t

According to Table 1, the consumer’s surplus corresponding to buy online directly

and ROPS are max{v − p,−m} and max{v − p − t,−t}, respectively. Follows from the

principle of consumer utility maximization, if a consumer chooses the buy online directly

channel, the probabilities that the consumer keeps and returns the product are G(p−m)

and G(p −m), respectively. If a consumer chooses the ROPS channel, the probabilities

that the consumer chooses to buy or not buy the product are G(p) and G(p), respectively.

The consumer’s surplus corresponding to buy offline directly is max{v− p− t,−t}, thus,

the probabilities that an offline consumer chooses to buy or not to buy the product are

G(p) and G(p), respectively.

2.3. Notations and assumptions

The related parameters and variables used in this paper are summarized in Table 2;

other notations will be defined as needed.

To facilitate the analysis, we define the following functions.

L1(p) = G(p −m)− (p− s)g(p −m), (2.3)

L3(p) = G(p)− (p− s)g(p), (2.4)
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Table 2: Summary of notations.

Notation Description

Subscriptions

O The omni-channel strategy.

Decision

p The online retailer’s retail price.

Q The online retailer’s inventory (ordering) quantity.

Parameters

m The unit shipping fee.

t The unit travelling cost of consumers to visit the store.

v The valuation of the product by the consumer, a random value that follows

distribution G(·) and density g(·), G(·) = 1−G(·).

c The unit inventory and procurement cost.

s The salvage price for a leftover unit.

b The cross-selling benefit.

α The fraction of online consumers choosing to ROPS and 1 − α is the fraction

of online consumers choosing to buy online directly.

β The fraction of the incremental demand (brought by the omni-channel strategy)

coming from the online market 1 − β and is the fraction of the incremental

demand coming from offline market.

k The fraction of the market demand served under the single online channel

strategy.

η Reference point effects parameter (η > 0).

λ Coefficient of loss aversion (λ ≥ 1).

ρ The online retailer’s level of optimism (0 ≤ ρ ≤ 1).

X The aggregate market demand under the omni-channel strategy, a random

value that follows distribution F (·) and density f(·), F (·) = 1− F (·).

H(z) Partial expectation of the random variable X , i.e., H(z) =
∫

z

0 xf(x)dx.

L2(p) = λ1L1(p) + λ2L3(p), (2.5)

A(p) = (p− s)G(p−m)−m, and B(p) = (p− s)G(p) + b, (2.6)

where λ1 = (1− α)[β(1 − k) + k], λ2 = α[β(1 − k) + k] + (1− β)(1− k).

The properties of functions (2.3)-(2.6) can be referred to Lemma 1-3 of Zhang et

al. [41]. Furthermore, we need the following assumptions.

Assumption 1. Both F (·) and G(·) have increasing failure rates, i.e., f(x)/F (x) is

increasing in x and g(v)/G(v) is increasing in v.

Assumption 2. Suppose −g(p−m)− (p− s)g′(p−m) < 0 and −g(p)− (p− s)g′(p) < 0

throughout the paper.
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It is worth mentioning that Assumption 2 ensures the retailer’s expected utility

function to be concave with respect to p and Q and thus the maximum p and Q are

unique. In addition, the following lemma can be obtained (see Zhang et al. [41]).

Lemma 1. Li(p) (i = 1, 2, 3) is decreasing in p.

In the following sections, we first present the optimal joint pricing and ordering

policies for the omni-channel strategy. Second, the impacts of reference point effects,

loss degree and retailer’s optimistic level on the optimal pricing and ordering strategy as

well as the optimal expected utility are emphatically analyzed.

3. The Omni-channel Strategy

In this section, we analyze the optimal omni-channel pricing and inventory strategy

for the online retailer. The profit of the online retailer is

πO(X, p,Q)

= pK1(1− α)G(p −m)(X ∧Q) + sK1(1− α)G(p −m)(X ∧Q)−mK1(1− α)(X ∧Q)

+ pK1αG(p)(X ∧Q) + sK1αG(p)(X ∧Q) + bK1α(X ∧Q)

+ pK2G(p)(X ∧Q) + sK2G(p)(X ∧Q) + bK2(X ∧Q)− cQ+ s[Q− (X ∧Q)]

=

{

[λ1A(p) + λ2B(p)]X − (c− s)Q, X < Q,

[λ1A(p) + λ2B(p)]Q− (c− s)Q, X ≥ Q,
(3.1)

where ∧ is the minimum operator. K1 = β(1−k)+k, K2 = (1−β)(1−k) andK1+K2 = 1.

λ1 = (1−α)K1, λ2 = αK1+K2 and λ1+λ2 = 1. In (3.1), the first three terms denotes the

revenue from online consumers who buy online directly, while the fourth to sixth terms

represent the revenue from ROPS consumers. The seventh to ninth terms represent the

revenue from offline consumers. cQ and s[Q−(X∧Q)] present the procurement cost and

the salvage revenue of leftover units, respectively. Moreover, since the retailer’s maximum

possible payoff and the minimum possible payoff are (1 − α)(p − c −m)Q + α(p − c)Q

and [λ1A(p) + λ2B(p)]x− (c− s)Q, respectively. Thus, the retailer’s reference point is

rO(p,Q) = ρ[(1− α)(p− c−m) + α(p− c)]Q+ (1− ρ){[λ1A(p) + λ2B(p)]x− (c− s)Q},

where ρ ∈ [0, 1] represents the retailer’s optimism level. For a given reference level

rO(p,Q), the total expected utility for the retailer is

E[˜Ur(X, p,Q)]

= E[πO(X, p,Q)]−ληE[rO(p,Q)−πO(X, p,Q)]
+
+ηE[πO(X, p,Q)−rO(p,Q)]

+

= E[πO(X, p,Q)]−λη

∫ σ

x

{rO(p,Q)− [λ1A(p) + λ2B(p)]x+ (c− s)Q}f(x)dx

+ η

∫ Q

σ

{[λ1A(p) + λ2B(p)]x− (c− s)Q− rO(p,Q)}f(x)dx
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+ η{[λ1A(p) + λ2B(p)]Q− (c− s)Q− rO(p,Q)}F (Q), (3.2)

where σ = σ(p,Q) = [rO(p,Q) + (c − s)Q]/[λ1A(p) + λ2B(p)]. The retailer’s task is to

find out the optimal pricing and order quantity to maximize his overall expected utility.

In what follows, we first analyze the ordering strategy of the retailer under reference

point effects when the price is exogenous. Secondly, we further analyze the joint pricing

and ordering strategies of the retailer under reference point effects when the price is

endogenous.

3.1. The case when pricing decision is exogenous

When pricing decision is exogenous, denote the exogenous price as peO. Then (3.1)

and (3.2) becomes

πO(X, peO, Q) =

{

[λ1A(p
e
O) + λ2B(peO)]X − (c− s)Q, X < Q,

[λ1A(p
e
O) + λ2B(peO)]Q− (c− s)Q, X ≥ Q,

(3.3)

and

E[˜Ur(X, peO, Q)]

= E[πO(X, peO, Q)]−λη

∫ σ

x

{rO(p
e
O, Q)− [λ1A(p

e
O) + λ2B(peO)]x+ (c− s)Q}f(x)dx

+ η

∫ Q

σ

{[λ1A(p
e
O) + λ2B(peO)]x− (c− s)Q− rO(p

e
O, Q)}f(x)dx

+ η{[λ1A(p
e
O) + λ2B(peO)]Q− (c− s)Q− rO(p

e
O, Q)}F (Q), (3.4)

where σ = σ(peO, Q) = [rO(p
e
O, Q) + (c− s)Q]/[λ1A(p

e
O) + λ2B(peO)], rO(p

e
O, Q) = ρ[(1−

α)(peO− c−m)+α(peO− c)]Q+(1−ρ){[λ1A(p
e
O)+λ2B(peO)]x− (c− s)Q}. The existence

and uniqueness of the optimal order quantity is characterized via the following result.

Proposition 1.

(i) The expected utility function E[˜Ur(X, peO, Q)] is concave for all Q if

λ1A(p
e
O) + λ2B(peO) >

ηρ[peO − (1− α)m− s][(λ− 1)F (σ∗
) + 1] + (c− s)

1 + η

and thus there exists a unique optimal order quantity Q∗

O that maximizes E[˜Ur(X, peO, Q)].

(ii) With the omni-channel strategy, the optimal order quantity Q∗

O of the online retailer

is characterized by the following equation

F (Q∗

O) =


































1, λ1A(p
e
O)+λ2B(peO) ≤

ηρ[peO−(1−α)m−s][(λ−1)F (σ∗
)+1]+(c−s)

1+η
,

ηρ[peO−(1−α)m−s][(λ−1)F (σ∗
)+1]+(c−s)

(1+η)[λ1A(p
e
O)+λ2B(peO)]

,

λ1A(p
e
O)+λ2B(peO) >

ηρ[peO−(1−α)m−s][(λ−1)F (σ∗
)+1]+(c−s)

1+η
,

(3.5)
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where σ∗
= σ(peO, Q

∗

O) =
rO(p

e
O, Q

∗

O) + (c− s)Q∗

O

λ1A(peO) + λ2B(peO)
.

The following result characterizes the impact of the strength of reference point effects

(η), loss aversion coefficient (λ) and optimism factor (ρ) on the optimal order quantity

Q∗

O.

Proposition 2.

(i) If λ ≤
{

[λ1A(p
e
O)+λ2B(peO)]F (Q∗

O)

ρ[peO − (1− α)m− s]
−1

}

1

F (σ∗)
+1, then the optimal order quantity

Q∗

O increases with η; furthermore, if λ >
{

[λ1A(p
e
O)+λ2B(peO)]F (Q∗

O)

ρ[peO − (1− α)m− s]
−1

}

1

F (σ∗)
+

1, then Q∗

O decreases with η, where σ∗
= σ(peO, Q

∗

O) =
rO(p

e
O, Q

∗

O) + (c− s)Q∗

O

λ1A(p
e
O)+λ2B(peO)

.

(ii) The optimal order quantity Q∗

O decreases with λ.

(iii) The optimal order quantity Q∗

O decreases with ρ.

From Proposition 2 (i), we find that the reference point effect factor (η) follows a

threshold policy. That is, there exists a threshold λO =

{

[λ1A(p
e
O)+λ2B(peO)]F (Q∗

O)

ρ[peO − (1− α)m− s]
−

1

}

1

F (σ∗)
+ 1 such that when λ ≥ λO (i.e., the retailer is highly loss averse), the optimal

inventory level decreases as the reference point effect (η) increases. Whereas, when λ
is low, the retailer’s optimal inventory level increases as η increases. Hence, a high loss

aversion bias will lead to lower inventory level with increasing reference effects, while a

lower loss aversion bias leads to the opposite. The intuition is that if the retailer is highly

loss averse, as η increases (i.e., the retailer is more sensitive to the difference between

the actual profit and the reference payoff level), he will be more conservative and will

avoid losses due to the excessive ordering. This thus affects he to stock less. Similarly,

if the loss aversion is low, although the retailer is sensitive to the difference between the

actual profit and the reference payoff level, but because he is not pessimistic about the

available profit, which will make him to increase the inventory level.

Proposition 2 (ii) shows that the retailer’s optimal stocking decision decreases as the

loss aversion coefficient λ increases. The intuition behind this is that the retailer’s high

loss aversion behavior will cause he to worry about the loss of sales caused by excess

orders, thus reducing the order quantity. From Proposition 2 (iii), we find that the

ordering quantity decreases as the retailer’s level of optimism increases. This is because

the retailer’s reference payoff increases as ρ increases, so the disutility due to loss aversion

increases, which leads to a lower inventory level. The optimistic level also reflects the

retailer’s degree of risk aversion. The bigger the optimistic level is, the more risk averse

the retailer becomes.

The next proposition characterizes the impact of the strength of reference point

effects (η), loss aversion coefficient (λ) and optimism factor (ρ) on the optimal total

expected utility E[˜Ur, (X, p∗O, Q)].
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Proposition 3.

(i) If λ ≤
{

[λ1A(p
e
O)+λ2B(peO)]Q

∗

OF (Q∗

O) + Ω

[λ1A(peO)+λ2B(peO)]σ
∗

− 1

}

1

F (σ∗)
+ 1, then the total expected

utility E[˜Ur, (X, p∗O, Q)] under the optimal order quantity Q∗

O increases with η; fur-

ther, if λ >
{

[λ1A(p
e
O)+λ2B(peO)]Q

∗

OF (Q∗

O) + Ω

[λ1A(peO)+λ2B(peO)]σ
∗

−1

}

1

F (σ∗)
+1, then E[˜Ur, (X, p∗O,

Q)] decreases with η, where Ω = [λ1A(p
e
O)+λ2B(peO)][(λ − 1)H(σ∗

) + H(σ∗

O)],

σ∗
= σ(peO, Q

∗

O) =
rO(p

e
O, Q

∗

O) + (c− s)Q∗

O

λ1A(peO)+λ2B(peO)
.

(ii) The total expected utility E[˜Ur, (X, p∗O, Q)] under the optimal order quantity Q∗

O

decreases with λ.

(iii) The total expected utility E[˜Ur, (X, p∗O, Q)] under the optimal order quantity Q∗

O

decreases with ρ.

Proposition 3 indicates that the optimal total expected utility E[˜Ur, (X, p∗O, Q)] has

a similar analytic properties with the optimal order quantity Q∗

O. This also confirms the

fact that high risk implies high return and low risk comes with low return.

3.2. The case when pricing decision is endogenous

When pricing decision is endogenous, the optimal values of p and Q can be charac-

terized via the following Proposition 4.

Proposition 4. When pricing is endogenous, with the omni-channel channel strategy,

the following results hold true:

(i) There exists a unique optimal price p∗O of the online retailer which is given by

L2(p
∗

O) =
ηρQ∗

O[(λ−1)F (σ̂∗
)+1]

(1+η)[Q∗

OF (Q∗

O) +H(Q∗

O)] + (λ−1)ηH(σ̂∗)−η(1−ρ)x[(λ−1)F (σ̂∗)+1]
.

(3.6)

(ii) There exists a unique optimal order quantity Q∗

O of the online retailer which is given

by

F (Q∗

O) =


































1, λ1A(p
∗

O)+λ2B(p∗O) ≤
ηρ[p∗O−(1−α)m−s][(λ−1)F (σ̂∗

)+1]+(c−s)

1+η
,

ηρ[p∗O−(1−α)m−s][(λ−1)F (σ̂∗
)+1]+(c−s)

(1+η)[λ1A(p∗O)+λ2B(p∗O)]
,

λ1A(p
∗

O)+λ2B(p∗O) >
ηρ[p∗O−(1−α)m−s][(λ−1)F (σ̂∗

)+1]+(c−s)

1+η
,

(3.7)

where σ̂∗
= σ̂(p∗O, Q

∗

O) =
rO(p

∗

O, Q
∗

O) + (c− s)Q∗

O

λ1A(p
∗

O)+λ2B(p∗O)
.
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Remark 1. (i) When η = 0, i.e., there is no reference point effects, the problem reduces

to the model of omni-channel strategy proposed by Zhang et al. [41]. Then the optimal

price pno−rp∗

O and order quantity Qno−rp∗

O of the online retailer are given by L2(p
no−rp∗

O ) =

0 and

F (Qno−rp∗

O ) =











1, λ1A(p
no−rp∗

O )+λ2B(pno−rp∗

O )≤c− s,

(c−s)

λ1A(p
no−rp∗

O )+λ2B(pno−rp∗

O )
, λ1A(p

no−rp∗

O )+λ2B(pno−rp∗

O )>c− s,

respectively. Moreover, we can see from (3.6) that L2(p
∗

O) > 0, thus, it follows from

Lemma 1 that p∗O ≤ pno−rp∗

O . This indicates that the optimal price with reference point

effects is smaller than that without reference point effects.

(ii) When λ = 1, i.e., the online retailer is loss-neutral, then the optimal price plo−neu∗

O

and order quantity Qlo−neu∗

O of the online retailer are given by

L2(p
lo−neu∗

O ) =
ηρQlo−neu∗

O

(1 + η)E(X ∧Qlo−neu∗

O )− η(1− ρ)x
,

and

F (Qlo−neu∗

O ) =







































1, λ1A(p
lo−neu∗

O )+λ2B(plo−neu∗

O )≤
ηρ[plo−neu∗

O −(1−α)m−s]+(c−s)

1+η
,

ηρ[plo−neu∗

O −(1−α)m−s]+(c−s)

(1+η)[λ1A(p
lo−neu∗

O )+λ2B(plo−neu∗

O )]
,

λ1A(p
lo−neu∗

O )+λ2B(plo−neu∗

O )>
ηρ[plo−neu∗

O −(1−α)m−s]+(c−s)

1+η
.

Next in Proposition 5, we study the impact of the strength of reference point effects

(η), loss aversion factor (λ) and optimism factor (ρ) on the optimal price p∗O.

Proposition 5. For the optimal price p∗O, the following results holds.

(i) For the optimal price p∗O satisfying

L2(p
∗

O) >
ρQ∗

O[(λ− 1)F (σ̂∗
) + 1]

E(X ∧Q∗

O)− (1 − ρ)x+ (λ− 1)[H(σ̂∗)− (1− ρ)xF (σ̂∗)]
,

p∗O is increasing in η. Otherwise, p∗O is decreasing in η.

(ii) For the optimal price p∗O satisfying

L2(p
∗

O) >
ηρQ∗

OF (σ̂∗
)

H(σ̂∗)− (1− ρ)xF (σ̂∗)
,

p∗O is increasing in λ. Otherwise, p∗O is decreasing in λ.
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(iii) For the optimal price p∗O satisfying

L2(p
∗

O) >

ηQ∗

O[(λ− 1)F (σ̂∗
) + 1] + ηρ(λ− 1)Q∗

Of(σ̂
∗
)
∂σ̂∗

∂ρ

η(λ− 1)f(σ̂∗)[σ̂∗ − (1− ρ)x]
∂σ̂∗

∂ρ
+ ηx[(λ− 1)F (σ̂∗) + 1]

where
∂σ̂∗

∂ρ
=

[p∗O − (1− α)m− s]Q∗

O − [λ1A(p
∗

O) + λ2B(p∗O)]x

λ1A(p∗O) + λ2B(p∗O)
,

p∗O is increasing in ρ. Otherwise, p∗O is decreasing in ρ.

Follows from Lemma 2 that L2(p) is decreasing in p. Thus, from Proposition 5 (i),

there exists a threshold

p∗O = L−1
2

( ρQ∗

O[(λ− 1)F (σ∗
) + 1]

E(X ∧Q∗

O)− (1− ρ)x+ (λ− 1)[H(σ̂∗)− (1− ρ)xF (σ̂∗)]

)

,

when p∗O ∈ (0, p∗O), p
∗

O increases with the reference effect coefficient η. Otherwise, p∗O
decreases with η. The effects of λ and ρ on the optimal price p∗O have similar properties.

This indicates that the retailer will have a price standard when formulating the price

strategy. If the established price strategy does not exceed this price standard, the price

increases with the increase of η. If the established price strategy exceeds this price

standard, the price decreases as the reference effect coefficient η increases. (ii) and (iii)

have similar properties.

The following proposition characterizes the impact of the strength of reference point

effects (η), loss aversion factor (λ) and optimism factor (ρ) on the optimal order quantity

Q∗

O.

Proposition 6.

(i) If

λ ≤
{

[λ1A(p
∗

O) + λ2B(p∗O)]F (Q∗

O)

ρ[p∗O − (1− α)m− s]
− 1

}

1

F (σ̂∗)
+ 1,

then the optimal order quantity Q∗

O increases with η; furthermore, if

λ >
{

[λ1A(p
∗

O) + λ2B(p∗O)]F (Q∗

O)

ρ[p∗O − (1− α)m− s]
− 1

}

1

F (σ̂∗)
+ 1,

then Q∗

O decreases with η, where σ̂∗
= σ̂(p∗O, Q

∗

O) =
rO(p

∗

O, Q
∗

O) + (c− s)Q∗

O

λ1A(p
∗

O) + λ2B(p∗O)
.

(ii) The optimal order quantity Q∗

O decreases with λ.

(iii) The optimal order quantity Q∗

O decreases with ρ.

Under the omni-channel strategy, Proposition 6 indicates that the optimal structural

properties of ordering strategy when pricing decision is endogenous are similar to that

when pricing decision is exogenous.

The following conclusion is the direct result of Proposition 6.
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Corollary 1.

(i) If

λ ≤
{

[λ1A(p
∗

O) + λ2B(p∗O)]F (Q∗

O)

ρ[p∗O − (1− α)m− s]
− 1

}

1

F (σ̂∗)
+ 1,

then Q∗

O > Qno−rp∗

O ; furthermore, if

λ >
{

[λ1A(p
∗

O) + λ2B(p∗O)]F (Q∗

O)

ρ[p∗O − (1− α)m− s]
− 1

}

1

F (σ̂∗)
+ 1,

then Q∗

O < Qno−rp∗

O , where σ̂∗
= σ̂(p∗O, Q

∗

O) =
rO(p

∗

O, Q
∗

O) + (c− s)Q∗

O

λ1A(p∗O) + λ2B(p∗O)
.

(ii) The optimal order quantity Q∗

O satisfies Q∗

O < Qlo−neu∗

O .

Corollary 1 (i) shows that, when the retailer is highly loss averse, the order quantity

considering the reference point effects is less than that without considering the reference

point effects. The opposite is true when loss aversion is low. Moreover, Corollary 1 (ii)

indicates that the order quantity under loss averse can be less than the results without

loss aversion (loss neutral retailer).

Proposition 7.

(i) If

λ ≤
{

[λ1A(p
∗

O) + λ2B(p∗O)]Q
∗

OF (Q∗

O) + Ω̂

[λ1A(p∗O) + λ2B(p∗O)]σ̂
∗

− 1

}

1

F (σ̂∗)
+ 1,

then the expected utility E[˜Ur(X, p∗O, Q
∗

O)] under the optimal price p∗O and order

quantity Q∗

O increases with η; further, if

λ >
{

[λ1A(p
∗

O) + λ2B(p∗O)]Q
∗

OF (Q∗

O) + Ω̂

[λ1A(p
∗

O) + λ2B(p∗O)]σ̂
∗

− 1

}

1

F (σ̂∗)
+ 1,

then E[˜Ur(X, p∗O, Q
∗

O)] decreases with η, where Ω̂ = [λ1A(p
∗

O) + λ2B(p∗O)][(λ −

1)H(σ̂∗
) +H(Q̂∗

O)] and σ̂∗
= σ̂(p∗O, Q

∗

O) =
rO(p

∗

O, Q
∗

O) + (c− s)Q∗

O

λ1A(p
∗

O) + λ2B(p∗O)
.

(ii) The expected utility E[˜Ur(X, p∗O, Q
∗

O)] under the optimal price p∗O and order quantity

Q∗

O decreases with λ.

(iii) The expected utility E[˜Ur(X, p∗O, Q
∗

O)] under the optimal price p∗O and order quantity

Q∗

O decreases with ρ.

From Proposition 7, we find that the structural properties of the total expected

utility when pricing decision is endogenous is similar to that when pricing decision is

exogenous.

For the case when the demand is uniform, we can determine the optimal price p∗O
and optimal order quantity Q∗

O in Corollary 2.
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Corollary 2. If the demand follows the uniform distribution on [x, x], then the online

retailer’s optimal price p∗O and order quantity Q∗

O are given by

L2(p
∗

O) =
2ηρQ∗

O[x−λx+(λ−1)σ̂∗
]

(1+η)Q∗

O(2x−Q∗

O)−(1+λη)x2+(λ−1)ησ̂2−2η(1−ρ)kx[x−λx+(λ−1)σ̂∗]

and

Q∗

O =
[λ1A(p

∗

O)+λ2B(p∗O)]x{(1+η)[λ1A(p
∗

O)+λ2B(p∗O)]−ηρ[p∗O−(1−α)m−s]−(c−s)}

(λ− 1)ηρ2[p∗O − (1− α)m− s]2 + (1 + η)[λ1A(p∗O) + λ2B(p∗O)]
2

+
[λ1A(p

∗

O)+λ2B(p∗O)]x{ηρ[p
∗

O−(1−α)m−s][ρ(λ−1)+1]+(c−s)}

(λ− 1)ηρ2[p∗O − (1− α)m− s]2 + (1 + η)[λ1A(p∗O) + λ2B(p∗O)]
2

4. Performance Analysis

In Sections 3, we established the price and inventory decisions of the online retailer

with reference point effects under the omni-channel strategy. In this section, we compare

the total expected utility of our model with that of Zhang et al. [41] under the omni-

channel strategy. For simplicity of notation, we call their model ZH model. It is worth

noting that the ZH model doesn’t consider the reference point effects (i.e., η = 0). The

corresponding utility comparison is as follows.

Proposition 8. If

λ ≤
{

[λ1A(p
∗

O) + λ2B(p∗O)]Q
∗

OF (Q∗

O) + Ω̂

[λ1A(p
∗

O) + λ2B(p∗O)]σ̂
∗

− 1

}

1

F (σ̂∗)
+ 1,

then the total expected utility E[˜Ur(X, p∗O, Q
∗

O)] under the optimal price p∗O and order

quantity Q∗

O satisfies E[˜Ur(X, p∗O, Q
∗

O)] > E[πO(X, p∗O, Q
∗

O)]. If

λ >
{

[λ1A(p
∗

O) + λ2B(p∗O)]Q
∗

OF (Q∗

O) + Ω̂

[λ1A(p
∗

O) + λ2B(p∗O)]σ̂
∗

− 1

}

1

F (σ̂∗)
+ 1,

then E[˜Ur(X, p∗O, Q
∗

O)] < E[πO(X, p∗O, Q
∗

O)] holds for the optimal price p∗O and order

quantity Q∗

O, where Ω̂ = [λ1A(p
∗

O)+λ2B(p∗O)][(λ−1)H(σ̂∗
)+H(Q∗

O)] and σ̂∗
= σ̂(p∗O, Q

∗

O)

=
rO(Q

∗

O) + (c− s)Q∗

O

λ1A(p∗O) + λ2B(p∗O)
.

According to Proposition 8, we can conclude that when the retailer is highly loss

averse, the optimal total expected utility considering the reference point effects is less

than that without considering the reference point effects (i.e., the models proposed by

Zhang et al. [41]). The opposite is true when loss aversion is low.

5. Conclusions

Our research complements the existing research stream in coordinating pricing and

inventory replenishment decisions under omni-channel retail environmental by incorpo-

rating the retailer’s behavior (i.e., retailer’s reference point effects). Specifically, this
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paper considers the online retailer’s omni-channel retail operations under reference point

effects in which consumers can cancel their order before payment and return the prod-

uct after payment if the product does not meet their expectation. The online retailer’s

optimal pricing and inventory decisions are derived under the omni-channel strategy by

maximizing the total expected utility. In addition, the impact of the reference point

effects on optimal price and order quantity are studied. Our main results are as follows.

First, our analysis reveals a threshold strategy on the retailer’s optimal pricing and

inventory decisions as well as the optimal total expected utility while considering the

impact of reference point effects. Moreover, with the increase of the retailer’s loss aversion

or the optimism level, the order quantity and overall expected utility decrease, while the

optimal price presents a threshold type.

Second, we investigate how key parameters affect the optimal total expected utility.

We find that when the retailer is highly loss averse, the optimal total expected utility

considering the reference point effects is less than that without considering the reference

point effects (i.e., the models proposed by Zhang et al. [41]). The opposite is true when

loss aversion is low.

Though this paper has identified the effects of reference point on the coordination of

pricing and ordering decisions for omni-channel retailer, there are still some shortcomings

that can be investigated in the future. First, this paper analyzes the pricing and ordering

decisions of a single omni-channel retailer under reference point effects, and unaware

of the influence of reference point effects on suppliers. An interesting future research

topic is to examine the pricing and inventory decisions for suppliers when considering

the reference point effects of the suppliers, and to design an appropriate coordination

mechanism so that a win-win outcome for both parties can be obtained. Second, in our

study, the consumer’s valuation of the product is assumed to be a random variable. In

view of the difficulty in obtaining the information on product valuation by consumers,

demand learning can be incorporated into formulating pricing and inventory strategy in

the presence of the reference point effects.
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Appendix

Proof of Proposition 1. The concavity can be shown by proving the non-positivity of

the second-order condition. After taking the first order derivative of (3.4) w.r.t. Q, we

get

∂E[˜Ur[X, peO, Q]

∂Q
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=(1 + η)[λ1A(p
e
O) + λ2B(peO)]F (Q)− (c− s)− λη[λ1A(p

e
O) + λ2B(peO)]F (σ)

∂σ

∂Q

− η[λ1A(p
e
O) + λ2B(peO)][F (Q) − F (σ)]

∂σ

∂Q
− η[λ1A(p

e
O) + λ2B(peO)]F (Q)

∂σ

∂Q

=(1+η)[λ1A(p
e
O)+λ2B(peO)]F (Q)−(c−s)−η[(λ1−1)F (σ)+1][λ1A(p

e
O)+λ2B(peO)]

∂σ

∂Q

=(1+η)[λ1A(p
e
O)+λ2B(peO)]F (Q)−(c−s)−ηρ[p∗O−(1−α)m−s][(λ−1)F (σ)+1]

and the second derivative w.r.t. Q is as follows

∂2E[˜Ur(X, p∗O, Q)]

∂Q2

=−(1+η)[λ1A(p
e
O)+λ2B(peO)]f(Q)−ηρ(λ−1)[peO−(1−α)m−s]f(σ)

∂σ

∂Q
,

Consequently, we can conclude that if ∂2E[˜Ur(X, p∗O, Q)]/∂Q2 < 0 if

λ1A(p
e
O)+λ2B(peO) >

ηρ[peO − (1− α)m− s][(λ− 1)F (σ∗
) + 1] + (c− s)

1 + η
,

which implies the concavity of the expected utility function E[˜Ur(X, peO, Q)] in Q.

(ii) If λ1A(p
e
O)+λ2B(peO) < 0, we have

∂E[˜Ur[X, p∗O, Q]

∂Q
< 0, then the optimal order

quantity Q∗

O is zero. If

0 ≤ λ1A(p
e
O)+λ2B(peO) ≤

ηρ[peO − (1− α)m− s][(λ− 1)F (σ∗
) + 1] + (c− s)

1 + η
,

we have
∂E[˜Ur[X, p∗O, Q]

∂Q
< 0, then the optimal order quantity Q∗

O is zero. If

λ1A(p
e
O)+λ2B(peO) >

ηρ[peO − (1− α)m− s][(λ− 1)F (σ∗
) + 1] + (c− s)

1 + η
,

the second order derivative w.r.t. Q is negative, and the optimal order quantity Q∗

O is

characterized by the first order condition

F (Q∗

O) =
ηρ[peO − (1− α)m− s][(λ− 1)F (σ∗

) + 1] + (c− s)

(1 + η)[λ1A(p
e
O)+λ2B(peO)]

.

The proof is complete. ���

Proof of Proposition 2. When

λ1A(p
e
O)+λ2B(peO) ≤

ηρ[peO − (1− α)m− s][(λ− 1)F (σ∗
) + 1] + (c− s)

1 + η
,
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the optimal order quantity Q∗

O = 0, then
∂Q∗

O

∂η
= 0,

∂Q∗

O

∂λ
= 0 and

∂Q∗

O

∂ρ
= 0. Therefore,

we only need to prove the case when

λ1A(p
e
O)+λ2B(peO) >

ηρ[peO − (1− α)m− s][(λ− 1)F (σ∗
) + 1] + (c− s)

1 + η
.

(i) From the implicit function theorem, we have

∂Q∗

O

∂η
= −

∂2E[˜Ur(X, peO, Q
∗

O)]

∂Q∂η

∂2E[˜Ur(X, peO, Q
∗

O)]

∂Q2

=
[λ1A(p

e
O)+λ2B(peO)]F (Q∗

O)− ρ[peO − (1− α)m− s][(λ− 1)F (σ∗
) + 1]

−
∂2E[˜Ur(X, peO, Q

∗

O)]

∂Q2

Therefore, when

λ ≤
{

[λ1A(p
e
O) + λ2B(peO)]F (Q∗

O)

ρ[peO − (1− α)m− s]
− 1

}

1

F (σ̂∗)
+ 1,

∂Q∗

O

∂η
≥ 0. Otherwise,

∂Q∗

O

∂η
< 0.

(ii) From the implicit function theorem, we get

∂Q∗

O

∂λ
= −

∂2E[˜Ur(X, peO, Q
∗

O)]

∂Q∂λ

∂2E[˜Ur(X, peO, Q
∗

O)]

∂Q2

=
−ηρ[peO − (1− α)m− s]F (Q∗

O)

−
∂2E[˜Ur(X, peO, Q

∗

O)]

∂Q2

< 0.

Thus, Q∗

O decreases with λ.

(iii) From the implicit function theorem, it follows

∂Q∗

O

∂ρ
= −

∂2E[˜Ur(X, peO, Q
∗

O)]

∂Q∂ρ

∂2E[˜Ur(X, peO, Q
∗

O)]

∂Q2

=

η[peO − (1− α)m− s]{[(λ− 1)F (σ∗
) + 1] + (λ− 1)ρf(σ∗

)
∂σ∗

∂ρ
}

∂2E[˜Ur(X, peO, Q
∗

O)]

∂Q2

where

∂σ∗

∂ρ
=
[(1−α)(p∗O−c−m)+α(peO−c)]Q∗

O−{[λ1A(p
e
O)+λ2B(peO)]x−(c−s)Q∗

O}

λ1A(p
e
O)+λ2B(peO)

≥x,
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which follows from σ =
rO(p,Q) + (c− s)Q

λ1A(peO)+λ2B(peO)
≥ x. Then we have

∂Q∗

O

∂ρ
< 0, which implies

that Q∗

O is decreasing in ρ. This completes the proof. ���

Proof of Proposition 3. Similar to Proposition 2, we only prove the case when

λ1A(p
e
O)+λ2B(peO) >

ηρ[peO − (1− α)m− s][(λ− 1)F (σ∗
) + 1] + (c− s)

1 + η
.

(i) Substituting Q∗

O into E[˜Ur(X, peO, Q)] in (3.4) and differentiating it w.r.t. η, we have

∂E[˜Ur(X, p∗O, Q
∗

O)]

∂η

={[λ1A(p
e
O)+λ2B(peO)]F (Q∗

O)− (c− s)}
∂Q∗

O

∂η

− λ[rO(p
e
O, Q

∗

O) + (c− s)Q∗

O]

∫ σ∗

x

f(x)dx− λη
∂[rO(p

e
O, Q

∗

O) + (c− s)Q∗

O]

∂η

∫ σ∗

x

f(x)dx

+ λ[λ1A(p
e
O)+λ2B(peO)]

∫ σ∗

x

xf(x)dx+ [λ1A(p
e
O)+λ2B(peO)]

∫ Q∗

O

σ∗

xf(x)dx

− [rO(p
e
O, Q

∗

O) + (c− s)Q∗

O]

∫ Q∗

O

σ∗

f(x)dx− η
∂[rO(p

e
O, Q

∗

O) + (c− s)Q∗

O]

∂η

∫ Q∗

O

σ∗

f(x)dx

+ {[λ1A(p
e
O)+λ2B(peO)]Q

∗

O − [rO(p
e
O, Q

∗

O) + (c− s)Q∗

O]}F (Q∗

O)

+ η
{

[λ1A(p
e
O)+λ2B(peO)]

∂Q∗

O

∂η
−

∂[rO(p
e
O, Q

∗

O) + (c− s)Q∗

O]

∂η

}

F (Q∗

O)

=[λ1A(p
e
O)+λ2B(peO)]Q

∗

OF (Q∗

O)− [λ1A(p
e
O)+λ2B(peO)]σ

∗
[(λ− 1)F (σ∗

)− 1] + Ω,

where

Ω = [λ1A(p
e
O)+λ2B(peO)]

(

λ

∫ σ∗

x

xf(x)dx+

∫ Q

σ∗

xf(x)dx
)

= [λ1A(p
e
O)+λ2B(peO)][(λ− 1)H(σ∗

) +H(Q∗

O)],

Thus, when

λ ≤
{

[λ1A(p
e
O)+λ2B(peO)]Q

∗

OF (Q∗

O) + Ω

[λ1A(p
e
O)+λ2B(peO)]σ

∗
− 1

}

1

F (σ∗)
+ 1,

∂E[˜Ur(X, peO, Q
∗

O)]

∂η
≥ 0.

Otherwise,
∂E[˜Ur(X, peO, Q

∗

O)]

∂η
< 0.

(ii) Substituting Q∗

O into E[˜Ur(X, peO, Q)] in (3.4) and differentiating it w.r.t. λ, we get

∂E[˜Ur(X, p∗O, Q
∗

O)]

∂λ

={[λ1A(p
e
O)+λ2B(peO)]F (Q∗

O)− (c− s)}
∂Q∗

O

∂λ
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− η[rO(p
e
O, Q

∗

O) + (c− s)Q∗

O]

∫ σ∗

x

f(x)dx− λη
∂[rO(p

e
O, Q

∗

O) + (c− s)Q∗

O]

∂λ

∫ σ∗

x

f(x)dx

+ η[λ1A(p
e
O)+λ2B(peO)]

∫ σ∗

x

xf(x)dx− η
∂[rO(p

e
O, Q

∗

O) + (c− s)Q∗

O]

∂λ

∫ Q∗

O

σ∗

f(x)dx

+ η
{

[λ1A(p
e
O)+λ2B(peO)]

∂Q∗

O

∂λ
−

∂[rO(p
e
O, Q

∗

O) + (c− s)Q∗

O]

∂λ

}

F (Q∗

O)

=η[λ1A(p
e
O)+λ2B(peO)]

∫ σ∗

x

(x− σ∗
)f(x)dx ≤ 0.

Hence, Q∗

O decreases with λ.

(iii) Substituting Q∗

O into E[˜Ur(X, peO, Q)] in (3.4) and differentiating it w.r.t. ρ, we have

∂E[˜Ur(X, p∗O, Q
∗

O)]

∂ρ

={[λ1A(p
e
O)+λ2B(peO)]F (Q∗

O)− (c− s)}
∂Q∗

O

∂ρ

+ η
{

[λ1A(p
e
O)+λ2B(peO)]

∂Q∗

O

∂ρ
−

∂[rO(p
e
O, Q

∗

O) + (c− s)Q∗

O]

∂ρ

}

F (Q∗

O)

={(1 + η)[λ1A(p
e
O)+λ2B(peO)]F (Q∗

O)−(c−s)}
∂Q∗

O

∂ρ
− η[λ1A(p

e
O)+λ2B(peO)]F (Q∗

O)
∂σ∗

∂ρ

=ηρ[peO − (1− α)m− s][(λ− 1)F (σ∗
) + 1]

∂Q∗

O

∂ρ
− η[λ1A(p

e
O)+λ2B(peO)]F (Q∗

O)
∂σ∗

∂ρ
.

Furthermore, since

∂σ∗

∂ρ
=

[peO − (1− α)m− s]− [λ1A(p
e
O)+λ2B(peO)]x+ ρ[peO−(1−α)m−s]

∂Q∗

O

∂ρ

λ1A(p
e
O)+λ2B(peO)

then

∂E[˜Ur(X, p∗O, Q
∗

O)]

∂ρ

=ηρ[peO − (1− α)m− s][(λ− 1)F (σ∗
) + 1]

∂Q∗

O

∂ρ
− η[λ1A(p

e
O)+λ2B(peO)]F (Q∗

O)
∂σ∗

∂ρ

=ηρ(λ− 1)[peO − (1− α)m− s]F (σ∗
)
∂Q∗

O

∂ρ

− ηF (Q∗

O){[p
e
O − (1− α)m− s]Q∗

O − [λ1A(p
e
O)+λ2B(peO)]x}

+ ηρ[peO − (1− α)m− s][1− F (Q∗

O)]
∂Q∗

O

∂ρ

It follows from σ ≥ x and Proposition 2(iii) that
∂E[˜Ur(X, p∗O, Q

∗

O)]

∂ρ
< 0, which

proves that E[˜Ur(X,Q∗

O)] decreases with ρ. This completes the proof. ���
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Proof of Proposition 4. After taking the first order derivative of (3.4) w.r.t. p, we

have

∂E[˜Ur(X, p,Q)]

∂p

=L2(p)[QF (Q) +H(Q)]− λη[ρQ+ (1− ρ)L2(p)x]F (σ̂)

+ ληL2(p)

∫ σ̂

x

xf(x)dx+ ηL2(p)

∫ Q

σ̂

xf(x)dx− η[ρQ+ (1− ρ)L2(p)x][F (Q)− F (σ̂)]

+ ηL2(p)QF (Q)− η[ρQ+ (1− ρ)L2(p)x]F (Q)

=L2(p){(1+η)[QF (Q)+H(Q)]+(λ−1)ηH(σ̂)}−η[ρQ+(1−ρ)L2(p)x][(λ−1)F (σ̂)+1],

(A.1)

It follows from (A.1) and the first order condition that the optimal price p∗O solves

(3.6). Moreover, we can see that L2(p
∗

O) > 0.

For any p satisfying Equation (3.4), differentiating (A.1) twice w.r.t. p, we have

∂2E[˜Ur(X, p,Q)]

∂p2

={(1 + η)[QF (Q) +H(Q)] + (λ− 1)ηH(σ̂)}
dL2(p)

dp

− η(1− ρ)x[(λ− 1)F (σ̂) + 1]
dL2(p)

dp
+ η(λ− 1)f(σ̂){[σ̂ − (1− ρ)x]L2(p)− ρQ}

∂σ̂

∂p

={(1 + η)[E(X ∧Q) + (λ− 1)ηH(σ̂)− η(1 − ρ)x[(λ− 1)F (σ̂) + 1]}
dL2(p)

dp

+ η(λ− 1)f(σ̂){[σ̂ − (1− ρ)x]L2(p)− ρQ]
∂σ̂

∂p
,

Since dL2(p)/dp < 0 by Lemma 4 in Zhang et al. [41],

η(λ− 1)f(σ̂){[σ̂ − (1− ρ)x]L2(p)− ρQ}
∂σ̂

∂p

= −
η(λ− 1)f(σ̂)ρ2Q2{[λ1A(p)+λ2B(p)]− [p− (1− α)m− s]L2(p)}

2

[λ1A(p)+λ2B(p)]3
< 0

and

(1 + η)E(X ∧Q) + (λ− 1)ηH(σ̂)− η(1 − ρ)x[(λ− 1)F (σ̂) + 1]

≥ (1 + η)E(X ∧Q) + (λ− 1)ηxF (σ̂)− η(1 − ρ)x[(λ− 1)F (σ̂) + 1]

≥ (λ− 1)ηxF (σ̂)− η(1 − ρ)(λ− 1)xF (σ̂)

= (λ− 1)ηρF (σ̂) > 0

where the first inequality follows from H(σ̂)

∫ σ̂

x

xf(x)dx ≥ x

∫ σ̂

x

f(x)dx = xF (σ̂) and

the second inequality follows from the fact that (1 + η)E(X ∧ Q) − η(1 − ρ)x > 0. We
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can thus conclude that ∂2E[˜Ur(X, p,Q)]/∂p2 < 0. Hence, E[˜Ur(X, p,Q)] is concave for

all p satisfying Equation (3.6). This yields the uniqueness of the optimal price p∗O.

(ii) The proof is similar to that of Proposition 1, which is omitted. ���

Proof of Proposition 5. (i) By applying the implicit function theorem, we get

∂p∗O
∂η

= −

∂2E[˜Ur(X, p∗O, Q)]

∂p∂η

∂2E[˜Ur(X, p∗O, Q)]

∂p2

=
L2(p

∗

O){[QF (Q)+H(Q)]+(λ−1)H(σ̂)}−[ρQ+(1−ρ)xL2(p
∗

O)][(λ−1)F (σ̂)+1]

−
∂2E[˜Ur(X, p∗O, Q)]

∂p2

=
L2(p

∗

O){E(X ∧Q)+(λ−1)H(σ̂)}−[ρQ+(1−ρ)xL2(p
∗

O)][(λ−1)F (σ̂)+1]

−
∂2E[˜Ur(X, p∗O, Q)]

∂p2

=
{[E(X ∧Q)−(1−ρ)x]+(λ−1)[H(σ̂)−(1−ρ)xF (σ̂)]}L2(p

∗

O)−ρQ[(λ−1)F (σ̂)+1]

−
∂2E[˜Ur(X, p∗O, Q)]

∂p2

Thus, if L2(p
∗

O) >
ρQ[(λ− 1)F (σ̂) + 1]

E(X ∧Q)−(1−ρ)x + (λ−1)[H(σ̂)−(1−ρ)xF (σ̂)]
, then

∂p∗O
∂η

> 0.

Otherwise,
∂p∗O
∂η

< 0.

(ii) By applying the implicit function theorem, we get

∂p∗O
∂λ

= −

∂2E[˜Ur(X, p∗O, Q)]

∂p∂λ

∂2E[˜Ur(X, p∗O, Q)]

∂p2

=
ηH(σ̂)L2(p

∗

O)−η[ρQ+(1−ρ)xL2(p
∗

O)]F (σ̂)

−
∂2E[˜Ur(X, p∗O, Q)]

∂p2

=
η[H(σ̂)−(1−ρ)xF (σ̂)]L2(p

∗

O)−ηρQF (σ̂)

−
∂2E[˜Ur(X, p∗O, Q)]

∂p2

Therefore, if L2(p
∗

O) >
ηρQF (σ̂)

H(σ̂)−(1−ρ)xF (σ̂)
, then

∂p∗O
∂λ

> 0. Otherwise,
∂p∗O
∂λ

< 0.

(iii) By applying the implicit function theorem, we get

∂p∗O
∂ρ

= −

∂2E[˜Ur(X, p∗O, Q)]

∂p∂ρ

∂2E[˜Ur(X, p∗O, Q)]

∂p2
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=

(λ−1)ησ̂f(σ̂)L2(p
∗

O)
∂σ̂
∂ρ

− η[Q− xL2(p
∗

O)][(λ−1)F (σ̂)+1]

−
∂2E[˜Ur(X, p∗O, Q)]

∂p2

+

−η(λ−1)f(σ̂)[ρQ−(1−ρ)xL2(p
∗

O)]
∂σ̂
∂ρ

−
∂2E[˜Ur(X, p∗O, Q)]

∂p2

=

−ηQ[(λ−1)F (σ̂)+1] + ηx[(λ−1)F (σ̂)+1]L2(p
∗

O)−ηρ(λ−1)Qf(σ̂)∂σ̂
∂ρ

−
∂2E[˜Ur(X, p∗O, Q)]

∂p2

+

η(λ−1)f(σ̂)[σ̂−(1−ρ)x]L2(p
∗

O)
∂σ̂
∂ρ

−
∂2E[˜Ur(X, p∗O, Q)]

∂p2

Hence, if L2(p
∗

O) >
ηQ[(λ−1)F (σ̂)+1]+ηρ(λ−1)Qf(σ̂)∂σ̂

∂ρ

η(λ−1)f(σ̂)[σ̂−(1−ρ)x]∂σ̂
∂ρ

+ ηx[(λ−1)F (σ̂)+1]
, then

∂p∗O
∂ρ

> 0.

Otherwise,
∂p∗O
∂ρ

< 0. The proof is complete. ���

Proof of Proposition 6. By applying the implicit function theorem, the proof is similar

to that of Proposition 9, which we omit here. ���

Proof of Proposition 7. By applying the implicit function theorem, and note that

∂E[˜Ur(X, p∗O, Q
∗

O)]

∂p∗O
=

∂E[˜Ur(X, p∗O, Q
∗

O)]

∂Q∗

O

= 0, the proof is thus similar to that of Propo-

sition 10, which we omit here. ���

Proof of Proposition 8. This result is directly follows from Proposition 7. ���
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