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Abstract

In this article, we consider a continuous review (s, S) inventory system with two types of

customers and exponential lead time. Both types of customers arrive according to indepen-

dent Poisson processes. When the inventory level is greater than s, both type of customers

demands are satisfied. When the inventory level lies between 1 and s, only type-2 customers

are satisfied and the type-1 customers are sent to a pool of finite capacity. If the replenished

stock is above s, pooled customers are selected one by one and inter-selection time follows

exponential distribution. Type-2 customers who arrive during stock out periods leave the

system. The problem is to find the optimal selection rate of pool customers at each instant

of time so that the long-run total expected cost rate is minimized. The problem is modelled

as a semi-Markov decision problem. The stationary optimal policy is computed using the

linear programming algorithm.

Keywords: Two types of customers, Postponed demands, Control of selection rate, Semi

Markov decision process.

1. Introduction

In most of the literature on inventory models, the authors give equal important to

all the demands that arrive to the system. However, in practice, these demands can be

treated to have different priorities. Veinott-Jr [20] introduced the concept of multiple

demand classes in periodic review inventory system with zero lead time. Kleijn and

Dekker [8] have given a summary about the papers which dealt with multiple demand

classes in periodic review inventory systems.

In the case of continuous review models, the first paper was by Nahmias and Demmy

[14] in which they analyzed an (s,Q) inventory system with two demand classes, stock

rationing, Poisson demand, backlogging and derived approximate expressions for costs

and service levels. Moon and Kang [13] generalised this model by assuming that de-

mands have a compound Poisson distribution. Arsalan et al. [1] generalised this model
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by considering more than two demand classes. Also, the model of Nahmias and Demmy

[14] was extended by Sivakumar and Arivarignan [17] to a work in which the demands

are assumed to follow Markovian arrival process and items in the stock have perishable

nature. Ha [5] derived the optimality of critical level policies for a continuous-review

model that dealt with Poisson demand processes, a single exponential server for replen-

ishments, and lost sales. Dekker et al. [4] derived exact and heuristic procedures for the

generation of an optimal critical level policy for a continuous review model with multiple

customer classes, Poisson demands, ample supply, and lost sales. This work was extended

by Melchiors et al. [11] to the case of fixed order quantity in which they assumed two

demand classes. Sapna-Isotupa [15] considered a lost sales (s,Q) inventory system with

two types of customers say ordinary and priority customers whose arrivals are according

to independent Poisson arrival processes and exponential lead time. Karthick et al. [7]

considered an continuous review (s, S) inventory system with two types of customers.

When the inventory level drops to s, the type-1 customers sent to an orbit. The in-

ter retrial times were assumed to have exponential distribution. They derived various

performance measures of the system in the steady state and total expected cost rate.

In the literature, many inventory models considered that the demands that arrive

when the stock is empty are lost or backlogged. In the later case, the demands that are

backlogged are satisfied immediately after the stock is replenished. But in some real life

situations, the backlogged demands may have to wait even after the replenishment. This

type of inventory problem is called inventory with postponed demands. Berman et al. [2]

first introduced the concept of postponed demands in inventory models. Krishnamoorthy

and Islam [9] considered an inventory system in which they assumed that the interval

time between two successive selections of the customers whose demands are postponed

is exponential. Sivakumar and Arivarignan [18] considered a perishable inventory model

with Markovian arrival process and Phase-type lead time. They assumed exponential

distribution for the time between two selections of the pooled customers. Manuel et al.

[10] considered an inventory system with independent Markovian arrival processes for

positive and negative customers and exponential distribution whose parameter depends

on the number of customers in the pool for the time between the selections of pooled

customers. Sivakumar and Arivarignan [19] considered an inventory system with infinite

pool size. They assumed that positive and negative demands arrive according to two

independent Markovian arrival processes, exponential lead time for the reorders and

exponential perishable time for the items in the stock. Jenifer et al. [6] considered the

continuous review inventory system with postponed demand consisting of finite waiting

hall and a single server. In their paper, under a specified cost structure, the optimal

service rate that minimizes the long-run total cost rate had been derived. chitra et al. [3]

considered inventory system with postponed demand. they find optimal selection rate

that minimizes the total expected cost rate.

In many Business sector, the customer pays for the actual profit for the business.

Customer uses the inventory and services and judges the quality of those inventories

and services. To manage customers, the manager should follow some approaches like

division of customers into two classes, generally called ordinary and priority. The priority
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customers are promote more sales and profit as compared to ordinary customers, as these

types of customers demand are completely satisfied. So the inventory level is below some

prefixed level, only priority customers demand are satisfied and ordinary customers are

sent to the pool, because all customer has to be considered valuable and profitable. These

pool customers are selected one by one after some random time, but long time they are

not wait in the pool. Hence they want to find the optimal selection rate of pool customer,

so that they reduce the pool customer waiting time and also minimize the total expected

cost rate.

In this article, we extend Sapna-Isotupa [15] model by assuming that the ordinary

customer demands are postponed when the inventory level reaches the prefixed level. We

select the customers from the pool one by one with the exponential inter selection time.

We focus our study on a system where speeding up or slowing down the selection rate is

possible. This problem is modelled as a semi Markov decision problem and the optimal

solution is obtained using linear programming method.

The rest of the paper is organized as follows. In section 2, we formulate the model.

In section 3, we present the steady state analysis of the problem and calculate the total

expected cost rate. In section 4, we derive the linear programming formulation of the

problem. Numerical illustration of the results, which provide insights of the behaviour

of the system, are provided in the final section.

2. Model Description and Analysis

We consider a continuous review inventory system with two types of customers say

type-1 and type-2 customers arriving according to two independent Poisson processes

with rates λ1 and λ2 respectively. The ordering policy is (s, S) policy, which operates as

follows: whenever the inventory level drops to the prefixed level s, an order of Q(= S−s)

units is placed, which arrives after an exponential amount of time with parameter β(> 0).

Demands of both types of customers are satisfied, whenever the inventory level exceeds

the prefixed level s, otherwise only type-2 customers demands are satisfied if items are

available and demands of type-1 customers are postponed until the ordered items are

received. The postponed customers are retained in a pool, which has finite capacity N .

After the replenishment and as long as the inventory level is greater than the prefixed

level s, the pooled customers are selected according to exponentially distributed time

lag whose parameter is chosen from a given set of positive values {µ1, µ2, . . . , µK}. The

demands of type-2 customers arriving during the stock out periods are assumed to be

lost.

Let L(t) and X(t) denote, respectively the on-hand inventory level and the number

of customers in the pool at time t. From the assumption made on the input and output

process it may be verified that the stochastic process X = {(L(t),X(t)), t ≥ 0} is a

Markov process with state space Ω, where

Ω = {(i, j), 0 ≤ i ≤ S, 0 ≤ j ≤ N}
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Whenever L(t) ≤ s or X(t) = 0, we do not select the customer from the pool, for ease

of notation in the sequel, we denote a null action by µ0 during the inventory level is less

than or equal to s or the pool customer level is zero. Based on the choice of actions, the

state space Ω is partitioned as follows

Ω1 = {(i, j); 0 ≤ i ≤ s, 0 ≤ j ≤ N} ∪ {(i, 0); s + 1 ≤ i ≤ S}

Ω2 = {(i, j); s + 1 ≤ i ≤ S, 1 ≤ j ≤ N}

Let An(n = 1, 2) represent the set of all possible actions of the system when it belongs

to the set Ωn(n = 1, 2). Then, we have

A1 = {µ0}, (2.1)

A2 = {µk, for some integer k between 1 and K.} (2.2)

and A = A1 ∪ A2 (2.3)

Let F be a set of functions f from the state space Ω to the action space A defined by

f : Ω → A

f(i, j) =

{

µ0, if (i, j) ∈ Ω1,

µk, for some integer k between 1 and K., if (i, j) ∈ Ω2.

The function f specifies a policy in terms of the actions taken on the states. For each

policy f the infinitesimal generator matrix is defined by

Qf = (qf (i, j), (i′, j′))(i,j),(i′,j′)∈Ω

Let Ej
i represent the set {i, i + 1, . . . , j}. In order to write down the rate matrix, we

induce an ordering in the state space Ω as follows:

(0,1, . . . ,S)

where i = ((i, 0), (i, 1), . . . , (i,N)) , 0 ≤ i ≤ S. The infinitesimal generator Qf can be

expressed in block-partitioned form.

[Qf ]ii′ =











































B1 i
′ = i i = 0

B2 i
′ = i 1 ≤ i ≤ s

B3 i
′ = i s+ 1 ≤ i ≤ S

C1 i
′ = i− 1 1 ≤ i ≤ s

C2 i
′ = i− 1 s+ 1 ≤ i ≤ S

D i′ = i+Q 0 ≤ i ≤ s

0 otherwise

The sub matrices are given below

[B1]jj′ =















−(λ1 + β) j′ = j 0 ≤ j ≤ N − 1

−β j′ = j j = N

λ1 j′ = j + 1 0 ≤ j ≤ N − 1

0 otherwise
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[B2]jj′ =















−(λ1 + λ2 + β) j′ = j 0 ≤ j ≤ N − 1

−(λ2 + β) j′ = j j = N

λ1 j′ = j + 1 0 ≤ j ≤ N − 1

0 otherwise

[B3]jj′ =







−(λ1 + λ2) j′ = j j = 0

−(λ1 + λ2 + µf ) j′ = j 1 ≤ j ≤ N

0 otherwise

[C1]jj′ =

{

λ2 j
′ = j 0 ≤ j ≤ N

0 otherwise

[C2]jj′ =







(λ1 + λ2) j
′ = j 0 ≤ j ≤ N

µf j′ = j − 1 1 ≤ j ≤ N

0 otherwise

[D]jj′ =

{

β j′ = j 0 ≤ j ≤ N

0 otherwise

It may be noted that B1, B2, B3, C1, C2 and D are square matrices of order N + 1.

2.1. Steady state analysis

Let X f = {(Lf (t),Xf (t)), t ≥ 0} denote the Markov process {(L(t),X(t)), t ≥ 0}

when policy f is adopted. A policy f is said to be stationary policy, if it is independent

of the history of previous states, decisions taken and transition times. Furthermore, a

process is called completely ergodic if the Markov process under consideration is irre-

ducible for every stationary policy. For every stationary policy f , (Lf ,Xf ) is denoted

by (L̄f , X̄f ). From our assumptions, it can be seen that for every stationary policy f ,

(L̄f , X̄f ) is completely ergodic. Since the action space is also finite, a stationary optimal

policy exist Mine and Osaki [12]. Hence we consider the class F of all stationary policy.

For any fixed f ∈ F and (i, j), (r, s) ∈ Ω, define

P f

(i,j)(r, s, t) = Pr[L̄f (t) = r, X̄f (t) = s | L̄f (0) = i, X̄f (0) = j]

Then P f

(i,j)(r, s, t) satisfies the Kolmogorov forward differential equations, as each policy

f results in an irreducible Markov chain. We also note that the state space and the

action set are finite. Hence the limit

πf (r, s) = lim
t→∞

P f

(i,j)(r, s, t)

exists and is independent of the initial conditions. Hence the stationary vector satisfies

the balance equation

∑

(i,j)∈Ω

πf (i, j)Qf ( (i, j), (r, s) ) = 0,∀(r, s) ∈ Ω (2.4)
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and normalization condition

∑

(i,j)∈Ω

πf (i, j) = 1 (2.5)

We define

πf = (πf (0), πf (1), . . . , πf (S)),

πf (i) = (πf (i, 0), πf (i, 1), . . . , πf (i,N)), i ∈ ES
0

The balance equation and the normalizing condition can be re-written as

πfQf = 0 and πfe = 1.

The first equation of the above yields the following set of equations:

πf (0)B1 + πf (1)C1 = 0 (2.6)

πf (i)B2 + πf (i+ 1)C1 = 0, i ∈ Es−1
1 (2.7)

πf (s)B2 + πf (s+ 1)C2 = 0 (2.8)

πf (i)B3 + πf (i+ 1)C2 = 0, i ∈ EQ−1
s+1 (2.9)

πf (i−Q)D + πf (i)B3 + πf (i+ 1)C2 = 0, i ∈ ES−1
Q (2.10)

πf (s)D + πf (S)B3 = 0 (2.11)

The above set of equations together with the condition
∑S

i=0 π
f (i)e = 1 determine the

steady state probability.

2.2. System performance measure

(i) Expected Inventory Level: The expected inventory level Mf
I is given by

Mf
I =

S
∑

i=1

i
N
∑

j=0

πf (i, j)

(ii) Expected Reorder Rate: The expected reorder rate Mf
R is given by

Mf
R =

N
∑

j=0

(λ1 + λ2 + µf )πf (s + 1, j)

(iii) Expected Balking Rate for Type-1 Customer: The expected balking rate for type-1

customer Mf
B1 due to the pool is full under the policy f is given

Mf
B1 = λ1

s
∑

i=0

πf (i,N)
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(iv) Expected Balking Rate for Type-2 Customer: The expected balking rate for type-2

customer Mf
B2 due to the inventory level is zero under the policy f is given

Mf
B2 = λ2

N
∑

j=0

πf (0, j)

(v) Expected Number of Customer Waiting in the Pool: The expected number of cus-

tomer waiting in the Pool Mf
W is given by

Mf
W =

S
∑

i=0

N
∑

j=1

jπf (i, j)

(vi) Expected Cost for using the Different Selection Rates: The expected cost due to

using the different selection rate Mf
SC is given by

Mf
SC =

S
∑

i=s+1

N
∑

j=1

∆f

(i,j)π
f (i, j)

where ∆f

(i,j) = τk if f(i, j) = µk and τk : cost associated for choosing selection

parameter µk.

2.3. Total cost

We construct the total expected cost per unit time based on these system perfor-

mance measures. Our main objective is to determine the optimal selection rates so that

the expected cost rate is minimized. To do this, we define the following cost values:

ch : inventory carrying cost per unit item.

cr : setup cost per order.

cb1 : balking cost for type - 1 customer per customer.

cb2 : balking cost for type - 2 customer per customer.

cw : waiting time cost of a pool customer per unit time.

Using these cost elements, the expected cost function T f is given by

TCf = chM
f
I + crM

f
R + cb1M

f
B1 + cb2M

f
B2 + cwM

f
W +Mf

SC

3. Linear Programming Formulation

To determine the optimal policy of selecting the rates of selection of pool customer

so as to minimize the total expected cost rate, we express the problem in terms of states

and policy. Assume that an optimal policy k is implemented that selects the rate µk at

the state (i, j). let φ(i, j, k) be the long run probability of the joint event that the system

X is in state (i, j) and the selected rate of selection of pool customer is µk. Also let the
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conditional probability, D(i, j, k), that the decision taken is µk given that the system is

in state (i, j). That is,

D(i, j, k) = Pr[ Decision is µk| State is (i, j)], (i, j) ∈ Ω.

where 0 ≤ D(i, j, k) ≤ 1 and
∑

k D(i, j, k) = 1.

Consider

φ(i, j, k) = Pr[ System is at (i, j) ∩Decision is µk]

= Pr[Decision is µk| System is at (i, j)] × Pr[ System is at (i, j)]

=D(i, j, k)πf (i, j) (3.1)

On summing both sides on k, we get

πf (i, j) =

K
∑

k=1

φ(i, j, k) (3.2)

as
∑

k D(i, j, k) = 1. we have

πf (i, j) =











φ(i, j, 0), (i, j) ∈ Ω1
K
∑

k=1

φ(i, j, k), (i, j) ∈ Ω2

Θ =(µ1, µ2, . . . , µK)T .

By using the above in the total expected cost rate, we can express the TC in terms of

φ’s.

Minimize

TC = ch

(

S
∑

i=1

iφ(i, 0, 0) +
s
∑

i=1

N
∑

j=1

iφ(i, j, 0) +
S
∑

i=s+1

N
∑

j=1

K
∑

k=1

iφ(i, j, k)

)

+cw

(

s
∑

i=0

N
∑

j=1

jφ(i, j, 0) +

S
∑

i=s+1

N
∑

j=1

K
∑

k=1

jφ(i, j, k)

)

+cr

(

N
∑

j=1

K
∑

k=1

(λ1 + λ2 + µk)φ(s + 1, j, k) + (λ1 + λ2)φ(s + 1, 0, 0)

)

+cb1λ1

s
∑

i=0

φ(i,N, 0) + cb2λ2

N
∑

j=0

φ(0, j, 0) +
S
∑

i=s+1

N
∑

j=1

K
∑

k=1

τkφ(i, j, k)

The φ′s must also satisfy constraints and these are obtained from the balance equations

and the normalizing condition. Thus we get the constraints as

φf (0)B1 + φf (1)C1 = 0 (3.3)

φf (i)B2 + φf (i+ 1)C1 = 0, i ∈ Es−1
1 (3.4)

φf (s)B2 + φf (s + 1)C̃2 = 0 (3.5)



OPTIMAL CONTROL OF POSTPONED DEMANDS 9

φf (i)B̃3 + φf (i+ 1)C̃2 = 0, i ∈ EQ−1
s+1 (3.6)

φf (i−Q)D + φf (i)B̃3 + φf (i+ 1)C̃2 = 0, i ∈ ES−1
Q (3.7)

φf (s)D + φf (S)B̃3 = 0 (3.8)

Where

[B̃3]ij =







−(λ1 + λ2) j = i i = 0

−(λ1 + λ2)e+Θ j = i 1 ≤ i ≤ N

0 otherwise

[C̃2]ij =















(λ1 + λ2) j = i i = 0

(λ1 + λ2)e j = i 1 ≤ i ≤ N

Θ j = i− 1 1 ≤ i ≤ N

0 otherwise

It may be noted that the matrices B̃3 and C̃2 are of order (NK + 1)× (N + 1).
The normalizing constraint becomes

∑

(i,j)∈Ω1

φ(i, j, 0) +
∑

k

∑

(i,j)∈Ω2

φ(i, j, k) = 1

and finally we have

φ(i, j, k) ≥ 0 for (i, j) ∈ Ωn, k ∈ An, n = 1, 2

For the completely ergodic process the rank of the coefficient matrix associated with
the constraints is M − 1, where M is the total number of constraints. As one of the
constraints is redundant, we omit one constraint. The remaining constraints are the
constraints of the linear programming model.

Lemma 1. There exists a basic feasible solution to the above linear programming model

with the property that for each (i, j) ∈ Ω, there is only one k such that

φ(i, j, k) > 0

and φ(i, j, k′) = 0 for k′ 6= k

Proof. See Mine and Osaki [12]. �

Corollary 1. Any basic feasible solution of the linear programming Problem yields a

pure stationary strategy.

Proof. Since from (3.1) and (3.2) we have

φ(i, j, k) =D(i, j, k)πf (i, j) > 0

and

πf (i, j) =
∑

k

φ(i, j, k).

Hence, we get
D(i, j, k) = φ(i, j, k)/

∑

k′

φ(i, j, k′)

Thus D(i, j, k) = 0 or 1 from the above lemma. �
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4. Numerical Illustration

In this section, we illustrate the method described in the above section through

numerical examples. In figure 1, L represents the inventory level and X represents the

customer level in the pool and we use S = 30, s = 10, N = 15, µ1 = 3, µ2 = 5, µ3 =

7, µ4 = 9. We present the optimal policy for a specific value for the parameter and the

cost.

If (i, j) lies in a shaded vertical bar corresponding to µk then the rate of pool customer

selection must be selected as µk. As an illustration, consider in figure 1, if the arrival

rate λ1 = 4, the inventory level is 13 and if the customer level in the pool is between 0

to 3, one has to select at the rate µ1; if pool customer level is above 3 but less than or

equal to 5, the optimal selection rate is µ2; if the pool customer level is above 5 and less

than or equal to 10, the selection rate is µ3; if the pool customer level lies from 11 to 15,

then the selection rate is µ4.

The main objective of these figures (Figure 1 to Figure 8) are to help one to choose

the optimal selection rate for a given inventory level and given number of customers in

the pool.

The pool customer selection rate depends on both the inventory level and the number

of customers in the pool for all the costs and all the system parameters. If maximum

number of customers are in the pool, then we must select maximum rate for pool customer

selection while the inventory level is near to the reorder level. If more units are available

in the stock, one has to increase the selection rate.

When each of type - 2 customer’s arrival rate (Figure 2) , pool customer waiting

cost (Figure 6) and balking cost of type - 1 customer (Figure 7) increases, then one has

to use same or higher selection rate.

When each of type - 1 customer’s arrival rate (Figure 1) and ordering cost (Figure

5) increases, then one has to use same or lower selection rate.

The optimal policy is insensitive to changes in the balking cost for type - 2 customer

(Figure 8).
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Figure 1: Influence of type - 1 demand rate on the optimal policy
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Figure 2: Influence of type - 2 demand rate on the optimal policy
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5. Conclusion

In this paper, we consider a continuous review (s, S) inventory system with two types

of customers. For the main objective of this work is to find an optimal selection rate of
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Figure 5: Optimal policy for various ordering cost
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Figure 6: Effect of pool customer waiting time cost on the optimal policy
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Figure 7: Effect of cb1 on the optimal policy

pool customers to be adopted at a given inventory level and the number of customer in

the pool.

One possible situation for this model is the following: In automobile industries, the
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Figure 8: Effect of cb2 on the optimal policy

orders from the customer who is having annual contracts should be considered on a

priority basis than the orders from the non-contract customers. Since all customer has

to be considered valuable and profitable. The customers in the pool should be selected

one by one after some random time based on the inventory availability and number of

customer waiting in the pool.

A similar case of Business sector like internet sales portals such as amazon, flipkart

etc. there are two types of customers were found, the one who subscribed for the special

membership service and the other one places the order without any subscription. To

manage both customers, the delivery system should give first priority to the membership

service subscribers who promotes more sales and non-subscriber customers shall sent to

the pool and delivery date could be promised based on the inventory level and number

of non-subscribers waiting in the pool.

The scope of application of this model is quite wide. The model is analysed using semi

Markov decision process and optimal decision rule for the selection of pool customer rate

are derived through linear programming formulation. From the numerical illustrations,

The optimal policy can be found from the given figures for a prefixed set of parameters

and costs. we have observed the pool customer selection rate depends on both inventory

level and number of customer in the pool. If number of customer in the pool is maximum,

one can choose maximum selection rate while the inventory level is near to the reorder

level. If more inventory is available in the system, one has to increase the selection rate.
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