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Abstract

Nowadays, environmental protection issues have received more and more attention due to

climate change and global warming. Many countries around the world have implemented car-

bon emission regulations to curb the greenhouse gas emissions to slow down the process and

prevent it from deteriorating ecological system, In this paper we develop a carbon-constrained

deteriorating inventory model when inventory stimulates demand. We first characterize the

profit maximizing inventory replenishment strategy and investigate the impacts of preserva-

tion technology investment and carbon emission parameters on retailer’s inventory replen-

ishment strategy under the Carbon Cap-and-Trade policy. We also make some extensions to

the model with the Carbon Offset policy. Finally, a numerical example and sensitivity anal-

ysis are presented to illustrate the theoretical results and obtain some managerial insights,

which is followed by concluding remarks and future research.

Keywords: Inventory, Stock-dependent demand, Deterioration, Preservation technology

investment, Carbon emissions.

1. Introduction

Human-induced climate change and global warming have posed enormous risks to

our environment, economies and societies, they have become areas of growing concern for

scientists, environmentalists and public policymakers over past two decades. In order to

reduce greenhouse gases and thwart the threat of climate change and global warming, the

Kyoto Protocol is the first international agreement bound by law under the UN climate

convention. The purpose of the Kyoto Protocol is to reduce greenhouse gas emissions

from industrial countries to 5.2% below 1990 levels between 2008 and 2012. Emissions

Trading (also known as cap and trade) is the only administration-based mechanism of

the three Kyoto Protocol mechanisms. The Carbon Cap-and-Trade system has been

designed to reduce carbon emission by utilizing market mechanisms. The system puts

a mandatory limit on emissions to all the firms, and allows firms to buy and sell rights

to emit carbon dioxide within the cap. Many countries or regions have made either

voluntary or regulatory efforts to reduce their carbon emissions to meet targets for the
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carbon emissions reduction set by the Kyoto Protocol. In response to the regulations on

carbon emissions reduction, the impact of carbon emissions on operations management

has drawn more academic attention. Recently, [6] first showed how carbon emission pa-

rameters can be added to various inventory models. Based on the classic EOQ model, [2]

and [21] then developed environmental inventory models, and the authors also explored

the different impacts of carbon emission parameters on the inventory replenishment de-

cision. Meanwhile, [22] extended the same issue to the price-sensitive demand with the

Carbon Cap-and-Trade policy. [32] proposed a classical single-period newsvendor model

with various carbon emission regulatory policies. [7] addressed the inventory manage-

ment problems by incorporating sustainability considerations. [9] conducted a research

to analyze the impact of carbon emission regulatory policies on the classical EOQ model.

On the basis of their study, they concluded that operational adjustments alone could in-

deed be effective in reducing emissions. Since transportation is a main source of carbon

emission, [40] analyzed the operations and loion decisions for a manufacturer under the

Carbon Cap-and-Trade policy. [42] studied the multi-item newsvendor problem to the

multi-item production planning problem with finite capacity and the Carbon Cap-and-

Trade policy. They also derived the optimal policy of production and carbon trading

decisions. [5] explored the integration of factors affecting the environmental impact of

transportation and inventory within the traditional EOQ model.

However, all these researches mentioned above fail to take into account the empir-

ical demand stimulating role of retail inventories. In contrast to constant or stochastic

demand rates, for certain items, the displayed stock level has a positive impact on sales

and profits. This happens because large amounts of inventory are more visible than

small ones, and this increased visibility stimulates demand by creating cross-selling and

impulse-buy opportunities. Large amounts of inventory might signal a popular product,

or provide consumers with an assurance of high service levels. Marketing researchers

and practitioners have recognized the phenomenon that high inventories might stimulate

demand in years. [38] first observed that displayed inventory can help induce greater

sales. [25] noted that the presence of inventory has a motivational effect on the people

around it, and large piles of goods displayed in a supermarket can lead the customers to

buy more. [11] also noted that impulsive buying categories have higher space elasticities,

which is consistent with the interpretation that space has a causal effect on sales and

not the converse. Hence, higher inventories not only improve service level to gain the

competitive advantages in business, but stimulate demand by serving as a promotional

tool. Due to the facts, a number of authors have developed the EOQ models that fo-

cused on stock-dependent demand rate patterns. [18] assumed that the demand rate was

a function of initial stock level. [4, 3] considered a power-form inventory-level-dependent

demand rate, which would decline along with the stock level throughout the entire cycle.

[10] considered a situation in which the stock-dependent demand rate was down to a

given level of inventory, beyond which it is a constant. [17], [1] and [28] relaxed the

assumption of a constant holding cost in [3]. Later, [37] extended Datta and Pal’s [10]

model to allow shortages, where the unsatisfied demand is backlogged at a fixed fraction

of the constant demand rate.
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Furthermore, deterioration is a common phenomenon in daily life because of poor

storage and preservation quality. [26] first considered the inventory model for perishable

items with a linearly stock-dependent demand. [27] then analyzed an EOQ model for

perishable items when inventory stimulates demand, allowing shortages and shortage-

dependent partial backlogging. Meanwhile, [16] and [15] extended the models of [10]

and [17] by considering deteriorating items. Lately, based on the result of [27], [12]

provided a deteriorating inventory model with stock-dependent demand and reciprocal

time-dependent backlogging rate. [35] then established an economic production quantity

model for deteriorating items and studied pricing and inventory policies where demand

depends on both price and inventory level. More recently, [23] and [41] incorporated

effects of inflation, deterioration and stock-dependent demand rates to develop an inven-

tory/production model over a finite planning horizon. [33] and [29] proposed determin-

istic inventory models with stock-dependent demand under trade credit policy. [39] and

[8] further extended Dye and Ouyang’s model [12] to the case of non-instantaneous dete-

riorating items because most goods would have a span of maintaining quality or original

condition. [30] then extended this issue to the varying rate of deterioration and stock-

dependent demand. [34] similarly proposed an inventory model for non-instantaneous

deteriorating items with demand influenced by both displayed stock level and selling

price under delay in payment.

However, the deterioration rate of goods in the above mentioned papers is viewed

as an exogenous variable, which is not subject to control. Although the deterioration

of goods is a natural process that cannot be stopped, it can be slowed down with the

corrective actions taken when handling and advancing preservation equipments. To ex-

press agreement with the practical inventory situation, [20] first incorporated the effect

of preservation technology investment into the classical deteriorating inventory model.

Their model aims to determine simultaneously both the optimal replenishment and

preservation technology investment strategies. [24] relaxed the assumption of a constant

demand rate in the model of [20] to study the inventory replenishment and preserva-

tion technology investment decisions when inventory stimulates demand. Lately, [13]

extended the model of [20] to a generalized deteriorating inventory system, and further

showed in a rigorous way that a higher preservation technology investment indeed leads

to a higher service rate. [19] extended this issue to the cases of price-sensitive demand.

[14] and [31] adopted a time-dependent demand function and preservation technology in-

vestment to model the finite time horizon inventory system with trade credit financing.

More recently, [36] extended the model of [13] to consider a joint location and preserva-

tion technology investment decision-making problem for non-instantaneous deteriorating

items under trade credit.

The inventory system for deteriorating items with stock-dependent demand has been

a topic of study for a long time, but little is known about the effects of preservation tech-

nology investment and carbon regulatory policy. Since carbon is the basic element in

fossil energy, cutting carbon emissions equals to cost savings and operational efficiency.

In this paper, we incorporate environmental protection considerations into inventory re-

plenishment decision making when inventory level stimulates demand. In addition, we
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use general forms for the time-dependent backlogging rate and productivity of preserva-

tion technology investment. The main emphasis of this paper is to determine the optimal

replenishment and preservation technology investment strategies which maximize the to-

tal profit per unit time under different carbon emission regulatory policies. We first begin

with the model formulation for the inventory system with the Carbon Cap-and-Trade

policy. Using the obtained theoretical results, we then extend the model to the case with

the Carbon Offset policy. Furthermore, we also investigate the impacts of preservation

technology investment and carbon cost parameters on retailer’s inventory replenishment

strategy. A numerical example and sensitivity analysis are presented to illustrate the

theoretical results and obtain some managerial insights, which is followed by concluding

remarks and future research. To keep the presentation simple, all proofs are put in the

appendix at the end of this paper.

2. Notation and Assumptions

2.1. Notation

To develop the mathematical model of inventory system, the notation adopted in

this paper is as below:

A = the replenishment cost per order.

C = the purchase cost per unit.

S = the selling price per unit, where S > C.

C1 = the holding cost per unit per unit time.

C2 = the backorder cost per unit per unit time.

C3 = the opportunity cost (i.e., goodwill cost) per unit.

Â = the amount of fixed carbon emissions per order.

Ĉ = the amount of carbon emissions associated per unit purchased.

Ĉ1 = the amount of carbon emissions per unit of inventory held per unit time.

̟ = the carbon cap.

w = the maximum capital constraint.

t1 = the time at which the inventory level reaches zero.

T = the length of the inventory cycle.

θ = the deterioration rate, a fraction of the on-hand inventory.

ξ = the preservation technology investment per unit time for reducing dete-

rioration rate in order to preserve the products, where 0 ≤ ξ ≤ w.

E = the carbon price per unit emission of carbon.

I(t) = the level of inventory at time t.
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TP (t1, T, ξ) = the total profit per inventory cycle without considering carbon emission

costs.

CE(t1, T, ξ) = the amount of carbon emissions per inventory cycle.

Π(t1, T, ξ) = the total profit per unit time.

2.2. Assumptions

In addition, the following assumptions are imposed:

1. The replenishment rate is infinite and lead time is zero.

2. The time horizon of the inventory system is infinite.

3. The demand rate function D(t) is deterministic and a function of instantaneous stock
level I(t). When inventory is positive, D(t) is given by:

D(t) = α+ βI(t), 0 ≤ t ≤ t1,

and when inventory is negative, D(t) is given by:

D(t) = α, t1 < t ≤ T,

where α > 0 and 0 < β < 1 are known as scale and shape parameters respectively.

4. There is no repair or replacement of deteriorated units. The items will be withdrawn
from warehouse immediately as they become deteriorated.

5. The reduced deterioration rate, m(ξ), is an increasing function of the preservation
technology investment ξ, where limξ→∞m(ξ) = θ.

6. Shortages are allowed. The fraction of shortages backordered is a decreasing function
b(x), where x is the waiting time up to the next replenishment, and 0 ≤ b(x) ≤ 1
with b(0) = 1. Note that if b(x) = 1 (or 0) for all x, then shortages are completely
backlogged (or lost).

3. The Model

Utilizing the above notation and assumptions, the depletion of the inventory occurs
due to the combined effects of the demand and deterioration in the interval (0, t1) and the
demand backlogged in the interval (t1, T ), respectively. Hence, the variation of inventory
level, I(t), with respect to time can be described by the following differential equation:

dI(t)

dt
=





−α− βI(t)− [θ −m(ξ)] I(t), 0 < t < t1,

−αb(T − t), t1 < t < T,

(3.1)

with boundary condition I(t1) = 0. The solution of (3.1) is

I(t) =





α
{
e[β+θ−m(ξ)](t1−t) − 1

}

β + θ −m(ξ)
, 0 < t < t1,

−α
∫ t

t1
b(T − u)du, t1 < t < T.

(3.2)
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Hence, the total profit and the amount of carbon emissions per inventory cycle can be
respectively calculated as follows:

TP (t1, T, ξ) =

{
sales revenue− ordering cost− purchase cost− holding cost

−shortage cost− opportunity cost− preservation technology cost

}

= S

{∫ t1

0
α+ βI(t)dt+ α

∫ T

t1

b(T − t)dt

}
−A

−C

[
I(0) + α

∫ T

t1

b(T − t)dt

]
− C1

∫ t1

0
I(t)dt

−αC2

∫ T

t1

(T − t) b(T − t)dt− αC3

∫ T

t1

1−b(T − t)dt− ξT

=
α [βS − C1 − C (β + θ −m(ξ))]

[β + θ −m(ξ)]2

{
e[β+θ−m(ξ)]t1 − [β + θ −m(ξ)] t1 − 1

}

+α (S − C + C3) t1+α

∫ T

t1

[S − C + C3 − C2 (T − t)] b(T − t)dt

−A− ξT − αC3T (3.3)

and

CE(t1, T, ξ) = Â+
αĈ1

{
e[β+θ−m(ξ)]t1 − [β + θ −m(ξ)] t1 − 1

}

[β + θ −m(ξ)]2

+αĈ

{
e[β+θ−m(ξ)]t1 − 1

β + θ −m(ξ)
+

∫ T

t1

b(T − t)dt

}
. (3.4)

In this paper we begin with the model formulation for the inventory system with the
Carbon Cap-and-Trade policy. Under the Carbon Cap-and-Trade policy, the retailer is
given an initial cap for the carbon emissions and allowed to buy and sell rights to emit
within the cap. If the retailer’s amount of carbon emissions exceeds its carbon cap ̟, it
has to buy allowances from the carbon trading market. However, if the retailer’s amount
of carbon emissions is lower than its carbon cap, it can sell the allowances to generate
revenue. The total profit per unit is therefore given by

Π(t1, T, ξ) =
TP (t1, T, ξ)

T
−E

[
CE(t1, T, ξ)

T
−̟

]

=
1

T

{
α
{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}

×
e[β+θ−m(ξ)]t1 − [β + θ −m(ξ)] t1 − 1

[β + θ −m(ξ)]2
+ α

[
S − (C + EĈ) + C3

]
t1

+α

∫ T

t1

[
S − (C + EĈ) + C3 −C2 (T − t)

]
b(T − t)dt

−
(
A+ EÂ

)}
− ξ − (αC3 −E̟) . (3.5)
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The problem now can be formulated as choosing the replenishment and preservation

technology strategies in order to solve the following nonlinear constrained optimization

problem:

max
t1,T,ξ

Π(t1, T, ξ), s.t. 0 < t1 < T and 0 ≤ ξ ≤ w.

Let f(t1, T, ξ) ≡ TP (t1, T, ξ)−E [CE(t1, T, ξ)−̟T ], if 0 < t∗1 < T ∗ and 0 < ξ∗ < w,

the necessary condition for maximizing Π(t1, T, ξ) are

∂Π(t1, T, ξ)

∂t1
=

1

T

∂f(t1, T, ξ)

∂t1

=
α

T

{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

} e[β+θ−m(ξ)]t1 − 1

β + θ −m(ξ)

+
α

T

[
S − (C + EĈ) + C3

]
[1− b (T − t1)] +

αC2

T
(T − t1)b (T − t1)

= 0 (3.6)

∂Π(t1, T, ξ)

∂T
=

1

T

∂f(t1, T, ξ)

∂T
−

f (t1, T, ξ)

T 2

=
1

T

{
α
[
S − (C + EĈ) + C3 −C2 (T − t1)

]
b(T − t1)− ξ − (αC3 − E̟)

}

−
f(t1, T, ξ)

T 2

= 0 (3.7)

and

∂Π(t1, T, ξ)

∂ξ
=

1

T

∂f(t1, T, ξ)

∂ξ

= −
αm′(ξ)

T

{{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}

×
e[β+θ−m(ξ)]t1 [β + θ −m(ξ)] t1 + [β + θ −m(ξ)] t1 − 2e[β+θ−m(ξ)]t1 + 2

[β + θ −m(ξ)]3

−(C + EĈ)
e[β+θ−m(ξ)]t1− [β + θ −m(ξ)] t1 − 1

[β + θ −m(ξ)]2

}
− 1. (3.8)

Eqs. (3.6) and (3.7), after some rearrangements, can be then rewritten as

0 =
{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

} e[β+θ−m(ξ)]t1 − 1

β + θ −m(ξ)

+S − (C + EĈ) + C3 − [S − (C + EĈ) + C3 − C2(T − t1)]b(T − t1) (3.9)

and

Π(t1, T, ξ) = α[S − (C +EĈ) + C3 − C2 (T − t1)]b(T − t1)− ξ − (αC3 − E̟) . (3.10)
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Here we observe from (3.5) that if the retailer closes the inventory system ( i.e.,

t1 = 0, ξ = 0 and T → ∞), the cost of losing all sales per unit time is the total goodwill

cost, which is equal to αC3. Since the retailer can sell its carbon credits to the carbon

trading market under the Carbon Cap-and-Trade policy, the earning from carbon trading

market is E̟. If E̟ ≥ αC3, it implies that losing sales all the time is more beneficial

than operating an inventory system. It is not realistically feasible. In addition, from

(3.5), we can also find that limξ→∞Π(t1, T, ξ) = −∞ < 0. Because the inventory system

should not be operated if Π(t1, T, ξ) < 0, the value of f(t1, T, ξ) must be non-negative.

Finally, as pointed out by [24] that β[S− (C+EĈ)] is the benefit received from a unit of

inventory and (C1 +EĈ1) + (C +EĈ)[θ−m(ξ)] is the cost due to a unit of inventory. If

βS−(C1+EĈ1)−(C+EĈ) [β + θ −m(w)] ≥ 0, it implies that the sales revenue received

from every unit inventory is greater than or equal to the cost of every item. Under this

circumstance, building inventory is profitable and we should display inventory to the

maximum as possible as we can implying we can not find a finite solution such that

Π(t1, T, ξ) is maximum. In the following sections, we restrict ourselves to the case in

which the retailer has finite positive total profit per unit time. More specifically, without

loss of generality, we make the following assumptions:

Assumption 1. The cost of losing all sales per unit time is greater than the revenue of

carbon cap per unit time , i.e., E̟ < αC3.

Assumption 2. For a given feasible ξ, Ω = {(t1, T ) : 0 < t1 < T, f(t1, T, ξ) ≥ 0} is a

nonempty set.

Assumption 3. The benefit received from every unit inventory is less than the cost of

every item, i.e., βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(w)] < 0.

Considering Eqs. (3.6)–(3.8), one can notice that solving the problem analytically is

not possible because of the presence of nonlinearity, we solve the maximization problem

stepwise. First, we find the optimal replenishment policy for a given preservation tech-

nology investment. Then using the optimal replenishment strategy for every preservation

technology investment ξ, we can find the profit maximizing preservation technology in-

vestment in the operating region 0 ≤ ξ ≤ w.

From (3.7), it is straightforward to see that ∂Π(t1,T,ξ)
∂T

< 0 on Ω when S−(C + EĈ)+

C3 − C2 (T − t1) ≤ 0. The following lemma shows that the optimal solution must lie on

the feasible side of the constraint boundary if S − (C + EĈ) + C3 − C2 (T − t1) ≤ 0.

For the convenience of discussion, we divide Ω into two parts, Ω1 := Ω ∩ {(t1, T ) :

S − (C + EĈ) + C3 − C2(T − t1) ≤ 0} and Ω2 := Ω \Ω1.

Lemma 1. For any given feasible ξ, if S− (C + EĈ)+C3−C2(T − t1) ≤ 0, the optimal

solution occurs at the boundary of Ω1. In addition, the optimal solution is unique.

In contrast to Lemma 1, the following lemma shows that there is a unique interior

maximizer of Π (t1, T, ξ) on Ω2.

Lemma 2. For any given feasible ξ, if S − (C + EĈ) +C3 −C2(T − t1) > 0, there is a

unique interior maximizer of Π(t1, T, ξ) on Ω2.
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We can now combine the results proven in the aforementioned lemmas, and state

the following theorem that establishes the existence and uniqueness of solution to the

problem.

Theorem 1. For any given feasible ξ, there is a unique interior maximizer for Π(t1, T, ξ)

on Ω.

Corollary 1. Let ΠWD(t1, T ) be the model without deterioration (i.e., θ = 0 and ξ = 0),

the maximizer of ΠWD(t1, T ), denoted by (tWD

1 , TWD), not only exists but is unique.

Corollary 2. Let ΠWP(t1, T ) be the model without preservation technology investment

(i.e., ξ = 0), the maximizer of ΠWP(t1, T ), denoted by (tWP

1 , TWP), not only exists but is

unique.

Corollary 3. Let ΠWC(t1, T, ξ) be the model without carbon emission constrain (i.e.,

E = 0), then for a given ξ, the maximizer of ΠWC(t1, T, ξ), denoted by (tWC

1 , TWC), not

only exists but is unique.

Having proved the existence and uniqueness of the optimal replenishment strategy for

a given preservation technology investment, we now focus on the preservation technology

investment decision that maximizes retailer’s profit. The purpose of retailer investing in

preservation technology is to raise its profit, and thus it is clear to see that ΠWP(t1, T ) ≤

Π(t1, T, ξ) < ΠWD(t1, T ). Let ξ ≡ min{w,ΠWD(tWD

1 , TWD) − ΠWP(tWP

1 , TWP)}, then ξ is

the upper bound of the optimal preservation technology investment. And hence, the

objective can be written as max0≤ξ≤ξ max(t1,T )∈Ω Π(t1, T, ξ). From Theorem 1, since

the optimal values of t1 and T can be uniquely determined for a given ξ, t1 and T can

be seen as a function of ξ. Let Π∗(t1(ξ), T (ξ), ξ) denote the maximum value function

of Π for a given ξ, then the problem becomes max0≤ξ≤ξ Π
∗(t1(ξ), T (ξ), ξ). By Berge’s

Maximum Theorem, because Π∗(t1(ξ), T (ξ), ξ) is continuous in ξ on the interval [0, ξ],

Weierstrass’s Theorem can be asserted to prove the existence of a maximum. If there

is an interior solution for ξ∗, a direct application of the Envelope Theorem gives the

optimality condition as dΠ(t1(ξ),T (ξ),ξ)
dξ

= ∂Π(t1,T,ξ)
∂ξ

= 0.

In order to solve the problem numerically using a fairly iterative search algorithm,

we prove the concavity of total profit per unit time in terms of preservation technol-

ogy investment under some mild assumptions. We formally establish this result in the

following theorem.

Theorem 2. For any given feasible (t1, T ), if the productivity of invested capital, m(ξ), is

a strictly concave function of ξ (i.e., m′(ξ) > 0 and m′′(ξ) < 0 or diminishing marginal

productivity of invested capital), the total profit per unit time, Π(t1, T, ξ), is a strictly

concave function with respect to ξ.

Theorem 2 indicates that there exists a unique value of ξ ∈
[
0, ξ
]
which maximizes

Π(t1, T, ξ) for any given t1 and T . Combining Theorems 1 and 2, we give a fairly iterative

search algorithm to obtain the local maximum for the problem.
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Algorithm 1.

Step 1 Start with k = 0 and choose the initial trial value ξ0, where 0 ≤ ξ0 ≤ ξ.

Step 2 For a given preservation technology investment ξk, find the optimal values of t1
and T , denoted by t1,k and Tk, for Π(t1, T, ξk) from Eqs. (3.6) and (3.7).

Step 3 Use the result gained from Step 2, and then determine the optimal value of ξ,

denoted by ξk+1, for Π(t1,k, Tk, ξ) by (3.8).

Step 4 If the difference between ξk+1 and ξk is sufficiently small (e.g., |ξk − ξk+1| <

0.00005), set ξ∗ = ξk, then (t∗1, T
∗, ξ∗) = (t∗1,k, T

∗
k , ξ

∗
k) is the optimal solution

and stop. Otherwise, set k = k + 1 and return to Step 2.

To begin the search, we need a starting value for ξ. Note that ξ is bounded between

0 and ξ, we might choose ξ0 =
ξ
2 for our initial guess in Step 1. In Step 2 where Theorem

1 is applied, there exists a unique local maximum solution (t∗1,k, T
∗
k ) of Π(t1, T, ξk) for

current ξk. Then the value of Π(t∗1,k, T
∗
k , ξ

∗
k+1) is improving in Step 3 where Theorem 2

is applied. Further, by using the results in Theorems 1 and 2, it is straightforward to see

that Π(t∗1,k, T
∗
k , ξ

∗
k+1) > Π(t∗1,k, T

∗
k , ξ

∗
k) and Π(t∗1,k, T

∗
k , ξ

∗
k) > Π(t∗1,k−1, T

∗
k−1, ξ

∗
k), and hence

Π(t∗1,k, T
∗
k , ξ

∗
k) is a monotone increasing sequence. By Monotone Convergence Theorem,

the procedure repeating Steps 2 and 3 would converge to a local maximum of Π(t1, T, ξ)

because Π(t1, T, ξ) is bounded between ΠWP(tWP

1 , TWP) and ΠWD(tWD

1 , TWD). Although

we cannot show the concavity property of Π(t1, T, ξ), the algorithm can be repeated to

identify the global maximum solution by using several starting values of ξ.

4. Sensitivity to Carbon Cost Parameters

In this section, we discuss how changes in various problem parameters affect the

optimal replenishment strategy and carbon emissions per unit time. We begin the section

with sensitivity analyses of preservation technology investment to the optimal service

level. Recall that we have shown that there is a unique interior global maximizer for

Π(t1, T, ξ) in Theorem 1. Hence, the optimal values of t1 and T can be represented as

functions of problem parameters. Furthermore, we also observe that the optimal solution

of Π(t1, T, ξ) always lies on the interior of Ω2; and therefore, Ω1 can be excluded from

further consideration. From now on in this section, we assume both βS − (C1 +EĈ1)−

(C + EĈ) [β + θ −m(ξ)] < 0 and S − (C + EĈ) + C3 − C2(T − t1) > 0 hold. The

proposition below characterizes the behavior of optimal service level with respect to

changes in the chosen preservation technology investment.

Proposition 1. The optimal service level is strictly increasing in preservation technology

investment.

Proposition 1 shows that the optimal service level increases strictly in preservation

technology investment. The result of the proposition is intuitive. If the retailer increases

its preservation technology investment, the deterioration rate for the item would decrease

and the duration of the inventory holding period becomes larger, and so the optimal

service level rises.



CARBON-CONSTRAINED DETERIORATING INVENTORY MODEL 67

In the next result we state the effects of carbon price on the optimal carbon emissions

per unit time and total profit per unit time.

Proposition 2. For any given feasible carbon cap and preservation technology invest-
ment, we have the following results:

(1) The optimal carbon emissions per unit time is strictly decreasing in carbon price.

(2) The optimal total profit per unit time is strictly pseudoconvex in carbon price.

Proposition 2 indicates that increasing carbon price can reduce the carbon emissions
efficiently. Since a higher carbon price will increase the overall cost of operating the

inventory system, adding the carbon price can significantly induce the retailer to reduce
carbon purchasing cost to maximize its own profit. However, when the carbon price is
sufficiently high, since the retailer can sell its carbon allowances to earn more profit from

the carbon trading market, total profit per unit time increases strictly as carbon price
increases. Hence, the optimal total profit per unit time is pseudoconvex in in carbon
price.

In the last of this section, we study the effect of changing the carbon cap on the
optimal replenishment strategy. The following proposition summarizes the outcomes.

Proposition 3. For any given feasible carbon price and preservation technology invest-

ment, if the carbon cap increases, the optimal replenishment strategy and carbon emis-
sions per unit time remain constant, but the optimal total profit per unit time increases
linearly.

Proposition 3 indicates that both the optimal replenishment strategy and carbon
emissions per unit time are not affected by carbon cap. The inefficiency of carbon cap on
reducing carbon emissions is because the retailer can buy or sell its carbon credits with

a fixed carbon price on the carbon trading market. Furthermore, since the retailer can
sell its allowances to earn more profit from the carbon trading market, the total profit
per unit time will increase linearly as carbon cap increases.

5. Extension to the Model with the Carbon Offset Policy

In this section, we extend the above results to analyze the model with the Carbon

Offset policy. The Carbon Offset policy allows individuals and businesses to compensate
for their carbon emissions by funding a project or activity around the world that reduces
or stores greenhouse gases. The project might involve rolling out clean energy technolo-

gies or soaking up CO2 directly from the air through the planting of trees. Therefore,
the retailer can reduce its carbon emissions without actually polluting less under the
Carbon Offset policy. In other words, it provides the retailer an opportunity to offset

its carbon emissions by supporting projects that reduce carbon emissions elsewhere with
unit price E. Hence, the retailer’s total profit per unit time, denoted by ΠCO(t1, T, ξ),
can be represented as

ΠCO(t1, T, ξ) =
TP (t1, T, ξ)

T
− E ×max

{
CE(t1, T, ξ)

T
−̟, 0

}
. (5.1)
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In order to analyze the problem clearly, for a given preservation technology investment,

we divide the problem into two subproblems:

Case 1:

max
t1,T

TP (t1, T, ξ)

T
, s.t. T > t1 > 0 and

CE(t1, T, ξ)

T
−̟ ≤ 0,

and

Case 2:

max
t1,T

TP (t1, T, ξ)

T
− E ×

[
CE(t1, T, ξ)

T
−̟

]
,

s.t. T > t1 > 0 and
CE(t1, T, ξ)

T
−̟ > 0.

In Case 1, the amount of retailer’s carbon emitted is constrained to be less than

certain cap ̟. It is also known as Mandatory Carbon Emissions Capacity policy. On

the other hand, the retailer should pay for its excess emissions with unit price E in Case

2, which can be seen as the model with the Carbon Cap-and-Trade policy. Then the

optimal total profit per unit time for the model with the Carbon Offset policy is to select

the minimum between Case 1 and Case 2. We next study the effects of carbon parameters

on the optimal replenishment strategy for each case. The following two propositions state

and prove these results formally.

Proposition 4. In Case 1, for a given preservation technology investment, then:

(1) There exists a unique global maximum for the retailer’s total profit per unit time.

(2) The optimal carbon emissions per unit time first increases strictly, then remains

constant as carbon cap increases.

(3) The optimal total profit per unit time first increases strictly, and then remains con-

stant as carbon cap increases.

Proposition 5. In Case 2, for a given preservation technology investment, then:

(1) There exists a unique global maximum for the retailer’s total profit per unit time.

(2) The optimal carbon emissions per unit time first decreases strictly, then remains

constant as carbon price increases.

(3) The optimal carbon emissions per unit time first remains constant, then increases

linearly as carbon cap increases.

(4) The optimal total profit per unit time first decreases strictly, then remains constant

as carbon price increases.

(5) The optimal total profit per unit time first increases strictly, then decreases strictly

as carbon cap increases.

Using the results from Propositions 4 and 5, we can now analyze the optimal re-

plenishment strategy for the model with the Carbon Offset policy among in the Cases

1 an 2. Let ̟CT denote the optimal carbon emissions per unit time with the Carbon
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Cap-and-Trade policy for a given carbon price E. For any given feasible preservation

technology investment, the following proposition summarizes the solution to the decision

problem the retailer faces.

Proposition 6. For any given feasible preservation technology investment, the optimal

replenishment strategy is Case 1 if ̟ > ̟CT; otherwise the optimal replenishment strategy

is Case 2.

Let ̟WC denote the optimal carbon emissions per unit time without carbon emission

constrain. Proposition 7 below characterizes the effects of carbon parameters on the

optimal replenishment strategy under the Carbon Offset policy without proof as it follows

immediately from Propositions 2, 3, and 4–6.

Proposition 7. In the model with the Carbon Offset policy, for a given preservation

technology investment, then:

(1) There exists a unique global maximum for the retailer’s total profit per unit time.

(2) The optimal carbon emissions per unit time first remains constant, then increases

strictly and finally remains constant as carbon cap increases.

(3) The optimal total profit per unit time first increases strictly, then remains constant

as carbon cap increases.

(4) If ̟ > ̟WC, the optimal carbon emissions per unit time remains constant as carbon

price increases; otherwise the optimal carbon emissions per unit time first decreases

strictly, then remains constant as carbon price increase.

(5) The optimal total profit per unit time remains constant as carbon price increases if

̟ > ̟WC; otherwise the optimal total profit per unit time first decreases strictly, then

remains constant as carbon price increase.

Further, as a consequence of Propositions 4–7 we have the following remarks in the

trivial case.

Remark 1. Then the model reduces to the case of Carbon Tax policy if ̟ = 0. On

other hand, the model reduces to the case of Mandatory Carbon Emissions Capacity

policy (i.e., Case 1) if E is sufficiently large.

Remark 2. For any given feasible preservation technology investment, the optimal total

profit per unit time for the Carbon Cap-and-Trade policy is greater or equal to than the

optimal total profit per unit time for the Carbon Offset policy.

6. Numerical Example and Sensitivity Analysis

In this section, we illustrate the proposed model with a example. Consider an in-

ventory situation where α = 1000, β = 0.2, A = 120, S = 35, C = 20, C1 = 3, C2 = 6,

C3 = 10, Â = 200, Ĉ = 5, Ĉ1 = 2.5, E = 0.2, ̟ = 6250, θ = 0.2, w = 500, β(x) = e−x
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and m(ξ) = (1 − e−0.01ξ)θ. We first compute the optimal values of ΠWD(t1, T ) and

ΠWP(t1, T, 0) as ΠWD(0.6220, 0.6774) = 14786.4 and ΠWP(0.1966, 0.3171, 0) = 14247.8,

respectively. And hence the upper bound for ξ gives ξ = min{500, 538.5765} = 500.

By applying Algorithm 1 with starting initial ξ0 = ξ
2 = 250 yields Π(t∗1, T

∗, ξ∗) =

Π(0.4733, 0.5429, 220.3577) = 14448.9 after 13 iterations, and so the corresponding opti-

mal carbon emissions per unit time is
CE(t∗

1
,T ∗,ξ∗)
T ∗

= 6137.93. In addition, by Proposition

6, since ̟ = 6250 > 6137.93 = ̟CT, we can then obtain the optimal total profit

per unit time and corresponding carbon emissions per unit time for the model with

the Carbon Offset policy as ΠCO (t∗1, T
∗, ξ∗) = Π(0.5417, 5985, 236.1339) = 14444.3 and

CE(t∗
1
,T ∗,ξ∗)
T ∗

= 6250. Figure 1 demonstrates the impact of carbon cap on the total profit

per unit time for the different carbon regulations. It is straightforward to see that the

total profit per unit with Carbon Cap-and-Trade policy increases as carbon cap increases.

Meanwhile, the total profit per unit without carbon emission constrain is always greater

or equal to that with Carbon Offset policy.
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Figure 1: Impacts of carbon cap on the total profit per unit time.

Further, in order to ensure whether the solutions for the both model are the global

maximum or not, we run the numerical results with distinct starting values of ξ0 =

0, ξ
20 ,

2ξ
20 , . . . , ξ, which are summarized in the graphical presentation. Figures 2(a) and

2(b) reveal that the total profit per unit time for both policies are unimodal in preser-

vation technology technology. And thus, the local maximum obtained here from the

proposed algorithm are indeed the global maximum. Moreover, we also observe from

Figures 2(c) and 2(d) that increasing the value of preservation technology technology

can efficiently give rise to an increasing in service level. Figures 2(e) and 2(f) indicate

that increasing the preservation technology investment results in a decreasing in the

carbon emissions per unit time only when β is low. When β is high enough, it repre-

sents that higher inventories stimulate greater demand and thereby induce a higher order

quantity from the retailer. Therefore, the carbon emissions generated from operating the

inventory system increases.

Next, we perform some numerical studies to investigate the influences of carbon

price and carbon cap on the retailer’s optimal replenishment and preservation technology
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(a) Total profit per unit time under the Carbon Cap-
and-Trade policy.

(b) Total profit per unit time under the Carbon Offset
policy.
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Figure 2: Impacts of preservation technology investment on service level and total profit per unit
time.

investment strategies. In each of the two carbon parameters we choose β = 0.05 and 0.2.

In the first study, we examine the effect of carbon price on the retailer’s optimal service

level, preservation technology investment, carbon emissions per unit time and total profit

per unit time. From Figures 5 and 4, we first observe that the optimal service level and

carbon emissions per unit time are both decreasing in carbon price for the two policies.
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These happen because higher carbon price increases the unit inventory purchasing and

holding costs, the retailer would reduce its service level and purchasing cost to maximize

profit. When the carbon price is high, the reduced service level and purchasing cost

consequently result in decreased optimal preservation technology investment. However,
when β and carbon price are low, we find that increasing the carbon price leads to an

increasing in the optimal preservation technology investment. This is because, under

such circumstances, the retailer can increases its the optimal total profit per unit time

by raising its preservation technology investment to reduce deterioration loss. Finally,
Figures 5 and 4 show that the optimal total profit per unit time first decreases and then

increases with increasing carbon price because the retailer can sell its carbon credits

to earn more profit from the carbon trading market under the Carbon Cap-and-Trade

policy. However, for the case of Carbon Offset policy, since it is not profitable to buy
extra emission rights when carbon price is large, the total optimal total profit per unit

time first decreases, and then remains constant.
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Figure 3: Impacts of carbon price on the optimal service level, preservation technology investment,
carbon emissions per unit time and total profit per unit time when β = 0.2.

In the second study, we further investigated the effect of carbon cap on the retailer’s

optimal replenishment and preservation technology investment strategies. For the Car-

bon Cap-and-Trade policy, since the retailer can buy and sell its carbon credits on the
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(a) Service level. (b) Carbon emissions per unit time.
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Figure 4: Impacts of carbon price on the optimal service level, preservation technology investment,
carbon emissions per unit time and total profit per unit time when β = 0.05.

carbon trading market, both the optimal replenishment strategy and carbon emissions

per unit time are not affected by carbon cap. Hence, from Figures 6 and 7, we can find

that the optimal service level, carbon emissions per unit time and preservation technol-

ogy investment remain constant, but the total profit per unit time increases linearly as

carbon cap increases.

On the other hand, for the Carbon Offset policy, we first observe that the optimal

service level and carbon emissions per unit time first remain constant, then increase

strictly and finally remains constant as carbon cap increases. These happen because of

the following reasons. If ̟ ≥ ̟WC, then the constraint on the amount of carbon emitted

is non-binding. If ̟ ≤ ̟CT, since the shadow price is greater than its unit carbon cost,

the retailer is willing to pay for an extra unit of emission rights until its amount of

carbon emitted equals ̟CT. Hence, the optimal service level and carbon emissions per

unit time remain constant as carbon cap increases. However, the retailer needs prepare

more inventory when carbon cap increases if ̟CT < ̟ < ̟WC because the constraint on

the amount of carbon emitted is binding. Therefore, both the optimal service level and

carbon emissions per unit time increase strictly as carbon cap increases. Furthermore,

from above arguments, because the constraint on the amount of carbon emitted is binding
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when ̟ < ̟WC, the total profit per unit time first increases strictly, and then remains

constant as carbon cap increases.

Finally, when β is high, we notice from Figure 5(c) that the optimal preservation

technology investment increases strictly as carbon cap increases when ̟CT < ̟ < ̟WC.

This happens because high inventory level induces more demand when β is high, the

retailer needs to prepare more inventory to satisfy customers’ orders as carbon cap in-

creases. The increased inventory leads the retailer to increase its preservation technology

investment to reduce the deterioration loss. Conversely, from Figure 6(c), we find that

the optimal preservation technology investment decreases strictly as carbon cap increases

when β is low and ̟CT < ̟ < ̟WC. This is because that the effect of inventory level on

demand is limit when β is low, the retailer does not need to prepare more inventory as

carbon cap increases. Instead, the increasing of carbon cap reduces the pressure of dete-

rioration loss, and therefore the optimal preservation technology investment decreases.
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(a) Service level. (b) Carbon emissions per unit time.
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Figure 5: Impacts of carbon price on the optimal service level, preservation technology investment,
carbon emissions per unit time and total profit per unit time when β = 0.2.
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Figure 6: Impacts of carbon cap on the optimal service level, preservation technology investment,
carbon emissions per unit time and total profit per unit time when β = 0.2.

7. Concluding Remarks and Future Work

Since many countries or regions have made either voluntary or regulatory efforts

to reduce their carbon emissions, more and more companies are realizing carbon as a

key consideration in business and investment decision making activities. At present,

fossil fuels are the dominant energy sources of the global primary energy supply, and

will likely remain so for the rest of the century. Because carbon is the basic element

in fossil energy, cutting carbon equals to cost savings and operational efficiency. In this

paper, an analytical model is developed to assess the impacts of preservation technology

investment and carbon cost parameters on inventory replenishment decision making and

the implications for retailer in a competitive market environment. The analytical formu-

lations of the model are shown and the theoretical results are discussed and compared.

The numerical result is further used to illustrate how the retailer demands benefit from

preservation technology investment under various carbon emission regulatory policies. It

is found that the retailer can improve the customer service level thorough efficient in-

vestment in preservation technology. However, the reduction of carbon emissions can be

achieved by increasing preservation technology investment only when the motivational
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Figure 7: Impacts of carbon cap on the optimal service level, preservation technology investment,
carbon emissions per unit time and total profit per unit time when β = 0.05.

effect of inventory on demand (i.e., β) is low. When the motivational effect of inventory

on demand is high enough, higher inventories stimulate greater demand. Hence the focus

of retailer is centered on making more profit, not on reducing the loss of deterioration

and carbon emissions. Moreover, the sensitivity analysis results also reveal that the pol-

icymakers can reduce retailer’s carbon emissions by adjusting carbon price and carbon

cap accordingly, and the motivational effect of inventory on demand has a significant

effect on preservation technology investment decision.

In the future, we may extend this work to consider some inventory related problems.

In this study, since the selling price of product is held constant, we can incorporate pricing

into this work. The use of endogenous price would provide us with an opportunity to

view the pricing decision of retailers conjointly with their inventory decision. Also, we

could extend the the model with time-varying demand or stochastic demand over a

finite planning horizon. In addition, delays in product availability are common in real-

world scenario, hence the stockout compensation policy may be incorporated into the

presented model to improve market efficiency and increase the retailers sales and profit.

Finally, since profit, service level and carbon emissions are conflicting to each other,

multi-objective optimization may be employed to extend the presented model further.
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Appendix

Proof of Lemma 1. The Karush-Kuhn-Tucker conditions for the optimization problem

are
∂Π(t1, T, ξ)

∂t1
− λC2 = 0,

∂Π(t1, T, ξ)

∂T
+ λC2 = 0,

S − (C + EĈ) + C3 − C2(T − t1) ≤ 0,

λ[S − (C + EĈ) + C3 − C2(T − t1)] = 0,

λ ≥ 0,

where λ is Lagrange multiplier. Since Π(t1, T, ξ) > 0 on Ω1, if S−(C +EĈ) + C3 −

C2 (T − t1) ≤ 0, it is straightforward to see that ∂Π(t1,T,ξ)
∂T

< 0 from (3.7), which implies

that λ > 0. Therefore by Complementary Slackness theorem, we have S − (C + EĈ) +

C3−C2(T −t1) = 0. That is, the optimal solution always lies on the constraint boundary

of Ω1.

Next, we show that the optimal solution is unique. Since the optimal solution

always lies on the constraint boundary of Ω1, rearranging the inequality yields T =

t1 +
S−(C+EĈ)+C3

C2
. Substituting the result into f (t1, T, ξ) and taking the second deriva-

tive of f (t1, T, ξ) with respective of t1, we then have

∂2f
(
t1, t1 +

S−(C+EĈ)+C3

C2
, ξ
)

∂t21

=
{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}
e[β+θ−m(ξ)]t1

< 0.

Since f
(
t1, t1 +

S−(C+EĈ)+C3

C2
, ξ
)
is strictly concave in t1 and t1+

S−(C+EĈ)+C3

C2
is affine,

then Π
(
t1, t1 +

S−(C+EĈ)+C3

C2
, ξ
)
is strictly pseudoconcave in t1.

Thus, Π
(
t1, t1 +

S−(C+EĈ)+C3

C2
, ξ
)
attains a local maximum on Ω1, which is the unique

global maximum due to the strict pseudoconcavity of Π
(
t1, t1 +

S−(C+EĈ)+C3

C2
, ξ
)
. This

completes the proof of Lemma 1. �
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Proof of Lemma 2. We first show that the maximizer of Π (t1, T, ξ) on Ω2 is unique.

Taking the second partial derivatives of f (t1, T, ξ) with respect to t1 and T gives

∂2f(t1, T, ξ)

∂T 2
= −α

{
C2b(T − t1)− [S − (C +EĈ) + C3 − C2 (T − t1)]b

′(T − t1)
}

< 0,

∂2f(t1, T, ξ)

∂t21
= α

{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}
e[β+θ−m(ξ)]t1

−α
{
C2b(T − t1)− [S − (C + EĈ) + C3 − C2(T − t1)]b

′(T − t1)
}

= α
{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}
e[β+θ−m(ξ)]t1

+
∂2f (t1, T )

∂T 2

< 0,

and
∂2f(t1, T, ξ)

∂t1∂T
= −

∂2f (t1, T )

∂T 2
.

The corresponding determinant of the Hessian matrix is then given by

|H| =
∂2f(t1, T, ξ)

∂T 2
×

∂2f(t1, T, ξ)

∂t21
−

[
∂2f(t1, T, ξ)

∂t1∂T

]2

= α
{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}
e[β+θ−m(ξ)]t1 ∂

2f(t1, T, ξ)

∂T 2

> 0.

Thus, f(t1, T, ξ) is a strictly concave in (t1, T ) on Ω2. Further, since T is affine, then

Π(t1, T, ξ) is strictly pseudoconcave in (t1, T ) on Ω2. Because T −t1 and S−(C + EĈ)+

C3 − C2(T − t1) are linear and −f(t1, T, ξ) is strictly convex, this implies that Ω2 is a

convex set. Therefore, by concave fractional programming, there exists a unique solution

such that Π(t1, T, ξ) is maximum on Ω2.

We then show that the optimal maximizer is an interior point of Ω2. For any given

t1 > 0, we observe that (3.6) holds if and only if T > t1. In addition, from (3.7), it is

straightforward to see that the the Π(t1, T, ξ) > 0 if and only if S − (C + EĈ) + C3 −

C2 (T − t1) > 0. Combining the arguments above sufficiently guarantees that Π(t1, T, ξ)

has a unique interior maximizer on Ω2, which also completes the proof of Lemma 2. �

Proof of Theorem 1. For convenience, let Π1(t1, T, ξ) and Π2(t1, T, ξ) denote the total

profit per unit time on the corresponding respectively feasible region Ω1 and Ω2. Since

Π (t1, T, ξ) is continuous on Ω, it is straightforward to verified that

max
(t1,T )∈Ω2

Π2(t1, T, ξ) > max
(t1,T )∈Ω2

Π2

(
t1, t1 +

S − (C + EĈ) + C3

C2
, ξ

)
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= max
(t1,T )∈Ω1

Π1

(
t1, t1 +

S − (C + EĈ) + C3

C2
, ξ

)

= max
(t1,T )∈Ω1

Π1(t1, T, ξ).

Hence, Π (t1, T, ξ) has a unique interior maximizer on Ω and the optimal values of t1
and T can be uniquely determined by these first-order conditions (3.6) and (3.7). This
completes the proof of Theorem 1. �

Proof of Theorem 2. Using the result derived in (3.8) and then taking the second

derivative of Π(t1, T, ξ) with respect to ξ yields

∂2Π(t1, T, ξ)

∂ξ2
= −

αm′′(ξ)

T [β + θ −m(ξ)]3

×

{{
βS − (C1 + EĈ1)− (C +EĈ) [β + θ −m(ξ)]

}

×
∞∑

n=3

(n− 2) [β + θ −m(ξ)]n tn1
n!

− (C + EĈ)
∞∑

n=2

[β + θ −m(ξ)]n+1
tn1

n!

}

+
α [m′(ξ)]2

T [β + θ −m(ξ)]3

{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}

×

∞∑

n=4

(n− 2) (n− 3) [β + θ −m(ξ)]n−1
tn1

n!
.

By using Assumption 3 and m′′(ξ) < 0, it is straightforward to see that ∂2Π(t1,T,ξ)
∂ξ2

< 0
implying that Π (t1, T, ξ) is strictly concave in ξ. �

Proof of Proposition 1. Differentiating implicitly on both sides of Eqs. (3.9) and

(3.10) with respect to ξ and utilizing the facts that ∂Π(t1,T,ξ)
∂t1

= 0 and ∂Π(t1,T,ξ)
∂T

= 0

yields

0 =
m′(ξ)

[β + θ −m(ξ)]2

{
βS − (C1 + EĈ1)− (C +EĈ) [β + θ −m(ξ)]

}

×
{
e[β+θ−m(ξ)]t1 − 1− e[β+θ−m(ξ)]t1 [β + θ −m(ξ)] t1

}

+
dt1

dξ

{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}
et1(β+θ−m(ξ))

+m′(ξ)(C + EĈ)
e[β+θ−m(ξ)]t1 − 1

β + θ −m(ξ)
+

(
dT

dξ
−

dt1

dξ

)

×
{
C2b(T − t1)− [S − (C +EĈ) + C3 − C2(T − t1)]b

′(T − t1)
}

(A.1)

and

−
1

α

[
∂Π(t1, T, ξ)

∂ξ
+ 1

]
=
{
C2b(T − t1)− [S − (C + EĈ) + C3 − C2(T − t1)]b

′(T − t1)
}
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×

(
dT

dξ
−

dt1

dξ

)
. (A.2)

Our goal is to show that d
dξ

t1
T

> 0. By using Taylor Series expansion on the exponent,

(3.8) can be rewritten as

∂Π(t1, T, ξ)

∂ξ
+ 1 = −

αm′(ξ)

T

{{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}

×
e[β+θ−m(ξ)]t1 [β + θ −m(ξ)] t1 + [β + θ −m(ξ)] t1 − 2e[β+θ−m(ξ)]t1 + 2

[β + θ −m(ξ)]3

−(C + EĈ)
e[β+θ−m(ξ)]t1− [β + θ −m(ξ)] t1 − 1

[β + θ −m(ξ)]2

}
.

= −
αm′(ξ)

T [β + θ −m(ξ)]3

{{
βS − (C1 + EĈ1)− (C+EĈ) [β + θ −m(ξ)]

}

×

∞∑

n=3

(n− 2) [β + θ −m(ξ)]n tn1
n!

−(C + EĈ)

∞∑

n=2

[β + θ −m (ξ)]n+1 tn1
n!

}
.

Since m′(ξ) > 0, it is straightforward to show that ∂Π(t1,T,ξ)
∂ξ

+ 1 > 0, which implies that

(A.2) holds if and only if dT
dξ

− dt1
dξ

< 0.

Then substituting (3.8) into (A.1) and rearranging leads

0 = g1 + g2 +
dt1

dξ

{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}
et1(β+θ−m(ξ)),

where

g1 ≡
m′(ξ)

[β + θ −m(ξ)]2

{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}

×
{
e[β+θ−m(ξ)]t1 − 1− e[β+θ−m(ξ)]t1 [β + θ −m(ξ)] t1

}

+
m′(ξ)

[β + θ −m(ξ)]2

{
βS − (C1 + EĈ1)− (C +EĈ) [β + θ −m(ξ)]

}

×
e[β+θ−m(ξ)]t1 [β + θ −m(ξ)] t1 + [β + θ −m(ξ)] t1 − 2e[β+θ−m(ξ)]t1 + 2

[β + θ −m(ξ)]T

and

g2 ≡m′(ξ)(C + EĈ)
e[β+θ−m(ξ)]t1 − 1

β + θ −m (ξ)

−m′(ξ)(C + EĈ)
e[β+θ−m(ξ)]t1− [β + θ −m (ξ)] t1 − 1

[β + θ −m(ξ)]2 T
.
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Because exx + x − 2ex + 2 =
∑∞

n=2
n−2
n! x

n > 0 for all x > 0 and 0 < t1 < T , we then

obtain

g1 >
m′(ξ)

[β + θ −m (ξ)]2

{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}

×
{
e[β+θ−m(ξ)]t1 − 1− e[β+θ−m(ξ)]t1 [β + θ −m(ξ)] t1

}

+
m′(ξ)

[β + θ −m(ξ)]2

{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}

×
e[β+θ−m(ξ)]t1 [β + θ −m(ξ)] t1 + [β + θ −m(ξ)] t1 − 2e[β+θ−m(ξ)]t1 + 2

[β + θ −m(ξ)] t1

=
m′(ξ)

[β + θ −m(ξ)]3 t1

{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}

×

{
2e[β+θ−m(ξ)]t1 [β + θ −m(ξ)] t1 − e[β+θ−m(ξ)]t1 [β + θ −m(ξ)]2 t21

+2− 2e[β+θ−m(ξ)]t1

}

= −
m′(ξ)

[β + θ −m(ξ)]3 t1

{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}

×
∞∑

n=3

(n− 2) (n− 1) [β + θ −m(ξ)]n tn1
(n+ 1)!

> 0

and

g2 >m′(ξ)(C + EĈ)

{
e[β+θ−m(ξ)]t1 − 1

β + θ −m(ξ)
−

e[β+θ−m(ξ)]t1− [β + θ −m(ξ)] t1 − 1

[β + θ −m(ξ)]2 t1

}

=
m′(ξ)(C + EĈ)

[β + θ −m(ξ)]2 t1

{
e[β+θ−m(ξ)]t1 [β + θ −m(ξ)] t1 − e[β+θ−m(ξ)]t1 + 1

}

=
m′(ξ)(C + EĈ)

[β + θ −m(ξ)]2 t1

∞∑

n=2

(n− 1) [β + θ −m(ξ)]n tn1
n!

> 0.

Combining the above inequalities, we observe that (A.1) holds if and only if dt1
dξ

> 0.

This together with T > t1 > 0 and dT
dξ

− dt1
dξ

< 0 yields the desired result that

d

dξ

t1

T
=

1

T 2

(
T
dt1

dξ
− t1

dT

dξ

)
>

1

T 2

(
t1
dt1

dξ
− t1

dT

dξ

)
=

t1

T 2

(
dt1

dξ
−

dT

dξ

)
> 0.

Consequently, the optimal service level increases strictly in preservation technology in-

vestment, which completes the proof of the Proposition 1. �
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Proof of Proposition 2 (1). Differentiating implicitly on both sides of (3.9) and (3.10)

with respect to E and simplifying results in

0 = −
{
Ĉ1 + Ĉ [β + θ −m(ξ)]

} e[β+θ−m(ξ)]t1 − 1

β + θ −m(ξ)
− Ĉ [1− b(T − t1)]

+
{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}
e[β+θ−m(ξ)]t1 dt1

dE

+
{
C2b(T − t1)− [S − (C + EĈ) + C3 −C2 (T − t1)]b

′(T − t1)
}(dT

dE
−

dt1

dE

)

=

{
CE(t1, T, ξ)

αT
−
{
Ĉ1 + Ĉ [β + θ −m(ξ)]

} e[β+θ−m(ξ)]t1 − 1

β + θ −m(ξ)
− Ĉ

}

+
{
βS − (C1 + EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}
e[β+θ−m(ξ)]t1 dt1

dE
(A.3)

and

CE(t1, T, ξ)

αT
− Ĉb (T − t1) =

{
C2b(T − t1)− [S − (C + EĈ) +C3 − C2(T − t1)]b

′(T − t1)
}

×

(
dT

dE
−

dt1

dE

)
. (A.4)

Recall that βS − (C1 +EĈ1)− (C +EĈ) [β + θ −m(ξ)] < 0 and S − (C + EĈ) +C3 −

C2(T − t1) > 0, we can then observe from (A.3) and (A.4) that

{
CE(t1, T, ξ)

αT
−
{
Ĉ1 + Ĉ [β + θ −m(ξ)]

} e[β+θ−m(ξ)]t1 − 1

β + θ −m(ξ)
− Ĉ

}
dt1

dE
> 0 (A.5)

and [
CE(t1, T, ξ)

αT
− Ĉb (T − t1)

](
dT

dE
−

dt1

dE

)
> 0. (A.6)

In order to prove d
dE

CE(t1,T,ξ)
T

< 0, taking the first derivative of CE(t1,T,ξ)
T

implicitly with

respect to E and then simplifying leads to

d

dE

CE(t1, T, ξ)

T
=

α

T

{{
Ĉ1 + Ĉ [β + θ −m(ξ)]

} e[β+θ−m(ξ)]t1 − 1

β + θ −m(ξ)
+ Ĉ −

CE(t1, T, ξ)

αT

}
dt1

dE

+
α

T

[
Ĉb(T − t1)−

CE (t1, T, ξ)

αT

](
dT

dE
−

dt1

dE

)
.

From the analysis carried out so far, it is straightforward to see that the proof is imme-

diately evident from (A.5) and (A.6).

(2). By taking implicit differentiation on Π(t1, T, ξ) with respect to ̟, we have

dΠ(t1, T, ξ)

d̟
=

∂Π(t1, T, ξ)

∂t1

dt1

dE
+

∂Π(t1, T, ξ)

dT

dT

dE
+

∂Π(t1, T, ξ)

∂E
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=̟ −
CE(t1, T, ξ)

T
.

Using the fact that d
dE

CE(t1,T,ξ)
T

< 0, it was relatively easy to show that dΠ(t1,T,ξ)
dE

> 0

as CE(t1,T,ξ)
T

≤ ̟ and dΠ(t1,T,ξ)
dE

≤ 0 as CE(t1,T,ξ)
T

> ̟, respectively. Therefore, the

optimal total profit per unit time is strictly pseudoconvex in carbon price. This completes

the proof. �

Proof of Proposition 3. We begin with the first statement. Differentiating implicitly

on both sides of Eqs. (3.9) and (3.10) with respect to ̟ simplifying gives

0 =
{
βS − (C1 +EĈ1)− (C + EĈ) [β + θ −m(ξ)]

}
e[β+θ−m(ξ)]t1 dt1

d̟

+
{
C2b(T − t1)− [S − (C + EĈ) + C3 − C2(T − t1)]b

′(T − t1)
}( dT

d̟
−

dt1

d̟

)

and

0 =
{
C2b(T − t1)− [S − (C + EĈ) + C3 − C2(T − t1)]b

′(T − t1)
}( dT

d̟
−

dt1

d̟

)
.

Based on previous equations, the behavior of t1 and T with regard to ̟ are dt1
d̟

= 0 and
dT
d̟

= 0, respectively. Therefore, it is clear to see that the carbon emissions per unit time

remains constant as carbon cap rises.

Next, consider the relationship between Π (t1, T, ξ) and ̟. By taking implicit dif-

ferentiation on Π(t1, T, ξ) with respect to ̟, we have

dΠ(t1, T, ξ)

d̟
=

∂Π(t1, T, ξ)

∂t1

dt1

d̟
+

∂Π(t1, T, ξ)

∂T

dT

d̟
+

∂Π(t1, T, ξ)

∂̟
= E.

That is, the optimal total profit per unit time increases linearly in carbon cap, which

completes the proof of the Proposition 3. �

Proof of Proposition 4 (1). The Karush-Kuhn-Tucker conditions for the Case are

given as follows:

∂

∂t1

TP (t1, T, ξ)

T
− λ×

∂

∂t1

CE(t1, T, ξ)

T
= 0, (A.7a)

∂

∂T

TP (t1, T, ξ)

T
− λ×

∂

∂T

CE(t1, T, ξ)

T
= 0, (A.7b)

CE(t1, T, ξ)

T
−̟ ≤ 0, (A.7c)

λ

[
CE(t1, T, ξ)

T
−̟

]
= 0, (A.7d)

λ ≥ 0, (A.7e)

where λ is Lagrange multiplier. If λ = 0, the constrain CE(t1,T,ξ)
T

−̟ ≤ 0 is non-binding.

Therefore, the uniqueness of global maximizer for the case follows immediately from
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Theorem 1 by setting E = 0. On the other hand, if λ > 0, the problem attains its

maximum at boundary, so CE(t1,T,ξ)
T

= ̟. For a given λ, by using analogous arguments

as in the proof of Theorem 1, we can show that the solution to Eqs. (A.7a) and (A.7b) is

unique. Then, by a similar argument as in Proposition 2, we can show that CE(t1,T,ξ)
T

is

strictly decreasing in λ, and so there is a unique λ such that CE(t1,T,ξ)
T

= ̟. Combining

the above arguments together, we can conclude that the the global maximizer for Case

1 not only exists but is unique.

(2). Here we denote the corresponding carbon emissions per unit time in the model

without carbon constrain as ̟WC =
CE(tWC

1
,TWC,ξ)

TWC . If ̟ ≥ ̟WC, then the constrain
CE(t1,T,ξ)

T
− ̟ ≤ 0 is non-binding. Therefore, the optimal carbon emissions remains

constant as carbon cap increases. On there other hand, if ̟ < ̟WC, the optimal solution

occurs at boundary, that is CE(t1,T,ξ)
T

= ̟. Therefore, it is straightforward to see that
d
d̟

CE(t1,T,ξ)
T

= 1, as it implies that the optimal carbon emissions is increases linearly in

carbon cap.

If ̟ ≥ ̟WC, the constrain CE(t1,T,ξ)
T

− ̟ ≤ 0 is non-binding. Therefore, the optimal

total profit per unit time remains constant as carbon cap increases. On there other hand,

if ̟ < ̟WC, we have

d

d̟

TP (t1, T, ξ)

T
=

∂

∂t1

TP (t1, T, ξ)

T

dt1

d̟
+

∂

∂T

TP (t1, T, ξ)

T

dT

d̟

= λ

{
∂

∂t1

CE(t1, T, ξ)

T

dt1

d̟
+

∂

∂T

CE(t1, T, ξ)

T

dT

d̟

}

= λ > 0,

which implies that the optimal total profit per unit time increases strictly in carbon cap.

This completes the proof of the Proposition 4. �

Proof of Proposition 5 (1). The Karush-Kuhn-Tucker conditions for the Case are

given as follows:

∂

∂t1

TP (t1, T, ξ)

T
− (E − λ)×

∂

∂t1

CE(t1, T, ξ)

T
= 0, (A.8a)

∂

∂T

TP (t1, T, ξ)

T
− (E − λ)×

∂

∂T

CE(t1, T, ξ)

T
= 0, (A.8b)

CE(t1, T, ξ)

T
−̟ > 0, (A.8c)

λ

[
CE(t1, T, ξ)

T
−̟

]
= 0, (A.8d)

λ ≥ 0, (A.8e)

where λ is Lagrange multiplier. If λ = 0, the constrain CE(t1,T,ξ)
T

− ̟ > 0 is non-

binding. Hence, the uniqueness of global maximizer for the case follows immediately

from Theorem 1. On the other hand, if 0 < λ ≤ E, the problem attains its maximum
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at boundary, so CE(t1,T,ξ)
T

= ̟. For a given λ, by using analogous arguments as in the

proof of Theorem 1, we can show that the solution to Eqs. (A.8a) and (A.8b) is unique.

Then, by a similar argument as in Proposition 2, we can show that CE(t1,T,ξ)
T

is strictly

decreasing in E − λ, and so there is a unique λ such that CE(t1,T,ξ)
T

= ̟. Combining

the above arguments together, we can conclude that the the global maximizer for Case

2 not only exists but is unique.

(2). If ̟ ≤ ̟CT, since the constrain CE(t1,T,ξ)
T

−̟ > 0 is non-binding, the result that

the optimal carbon emissions per unit time decreases strictly as carbon price increases

follows immediately from the Proposition 2. Furthermore, since CE(t1,T,ξ)
T

is strictly

decreasing in E, there exists a unique E such that CE(t1,T,ξ)
T

= ̟, say EL. If E > EL,

then CE(t1,T,ξ)
T

< ̟, this contradicts the condition CE(t1,T,ξ)
T

> ̟. Therefore, if E > EL,

the optimal solution occurs at boundary, that is CE(t1,T,ξ)
T

= ̟. Substituting this result

into objective, we can find that the objective function is independent with E. And hence

the optimal carbon emissions per unit time remains constant as carbon price increases.

On the other hand, if ̟ > ̟CT, since the optimal solution occurs at boundary, and

therefore the optimal carbon emissions per unit time remains constant as carbon price

increases.

(3). If ̟ ≤ ̟CT, since the constrain CE(t1,T,ξ)
T

−̟ > 0 is non-binding, the result that the

optimal carbon emissions per unit time remains constant follows immediately from the

Proposition 3. On the other hand, if ̟ > ̟CT, the optimal solution occurs at boundary,

that is CE(t1,T,ξ)
T

= ̟. It is clear to see that d
d̟

CE(t1,T,ξ)
T

= 1, as it implies that the

optimal carbon emissions is increases linearly in carbon cap. Therefore, the optimal

carbon emissions per unit time first remains constant, then increases linearly as carbon

cap increases.

(4). If ̟ ≤ ̟CT, it is trivial to see that the optimal carbon emissions per unit time is

̟CT. From Proposition 2, we obtain that

d

dE

{
TP (t1, T, ξ)

T
−E

[
CE(t1, T, ξ)

T
−̟

]}
= ̟ −

CE(t1, T, ξ)

T
= ̟ −̟CT < 0.

And thus, the optimal total profit per unit time decreases strictly as carbon price

increases. However, if E > EL, the optimal solution occurs at boundary, that is
CE(t1,T,ξ)

T
= ̟. By using same arguments as in (2), the optimal carbon emissions per

unit time remains constant as carbon price increases. On the other hand, if ̟ > ̟CT, the

optimal solution occurs at boundary, that is CE(t1,T,ξ)
T

= ̟. And therefore the optimal

carbon emissions per unit time remains constant as carbon price increases.

(5). If ̟ ≤ ̟CT, since the constrain CE(t1,T,ξ)
T

−̟ > 0 is non-binding, the result that

the optimal total profit per unit time increases linearly as carbon cap increases follows

immediately from the Proposition 3. On the other hand, if̟ > ̟CT, the optimal solution

occurs at boundary, that is CE(t1,T,ξ)
T

= ̟. We then have

d

d̟

{
TP (t1, T, ξ)

T
− E

[
CE(t1, T, ξ)

T
−̟

]}
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=
∂

∂t1

TP (t1, T, ξ)

T

dt1

d̟
− E ×

∂

∂t1

CE(t1, T, ξ)

T

dT

d̟

+
∂

∂T

TP (t1, T, ξ)

T

dT

d̟
− E ×

∂

∂T

CE(t1, T, ξ)

T

dT

d̟
+ E

= −λ

{
∂

∂t1

CE(t1, T, ξ)

T

dt1

d̟
+

∂

∂T

CE(t1, T, ξ)

T

dT

d̟

}
+ E

= E − λ.

Further, because CE(t1,T,ξ)
T

is strictly decreasing in E − λ, λ is strictly increasing in ̟.

Denote λ∗(̟) as the corresponding optimal λ with a given carbon cap ̟. Then, there

exists a unique ̟ such that λ(̟) = E, say ̟E. When ̟CE < ̟ ≤ ̟E, it implies that

0 < λ∗(̟) ≤ E. Since E − λ∗(̟) > 0, the optimal total profit per unit time increases

strictly as carbon cap increases. However, when ̟ > ̟E, because λ∗(̟) > E, it is

obvious to see that the optimal total profit per unit time decrease strictly as carbon cap

increases. �

Proof of Proposition 6. From the discussion in Proposition 4, since CE(t1,T,ξ)
T

decreases

strictly in λ when ̟ < ̟WC, λ is strictly decreasing in ̟. So that λ can be written as a

function of ̟. Denote λ∗(̟) as the corresponding optimal λ with a given carbon cap ̟.

Hence, we have λ∗(̟WC) = 0 and λ∗(̟CT) = E. Moreover, because λ decreases strictly

in ̟, it straightforward to see that ̟CT < ̟WC.

First, if ̟ ≥ ̟WC, since the constrain CE(t1,T,ξ)
T

− ̟ ≤ 0 is non-binding, it is

straightforward to see that the optimal strategy is Case 1. Next, when ̟CT < ̟ < ̟WC,

the shadow price in Case 1 is λ∗(̟) and 0 < λ∗(̟) < E. It clear to see that the shadow

price in Case 1 is always less than its unit carbon cost, and thereby it is not profitable

to buy extra emission rights. Therefore, when ̟CT < ̟ < ̟WC, the optimal strategy

is Case 1. Finally, because λ∗(̟) ≥ E when ̟ ≤ ̟CT, the shadow price in Case 1

is always greater or equal than its unit carbon cost and it is worthwhile to buy extra

emission rights until ̟ = ̟CT. Therefore, when ̟ ≤ ̟CT, the optimal strategy is Case

2, which also completes the proof of the Proposition 6. �
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