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Abstract

Two-variable gamma process with generalized Eyring model have been widely used to

assess the reliability of reliable products in engineering applications. Because no close forms

of the maximum likelihood estimators for the model parameters can be derived and iterative

procedure to evaluate the maximum likelihood estimate is very sensitive to the initial input

and difficult to control, the analytic genetic algorithm, Gibbs sampling Markov chain Monte

Carlo algorithm and Metropolis-Hastings Markov chain Monte Carlo algorithm methods are

established and applied to implementing parameter estimation for the gamma process. The

performance of those methods are evaluated through simulations. Simulation results show

that the Markov chain Monte Carlo method based maximum likelihood estimates outperform

the other competitors with smaller bias and mean squared error. The application of the

proposed methods was illustrated with a lumen degradation data set of light-emitting diodes.

Keywords: Cumulative exposure model, Gibbs sampling algorithm, Markov chain Monte

Carlo, Metropolis-Hastings algorithm.

1. Introduction

1.1 Problem Description

The failure times are difficult to obtain for the reliability inference of highly reliable

products that are tested by using conventional life test procedures (see Lim and Yum

[10], Peng and Tseng [19]). One approach to overcome the difficulty is to predict the

mean time to failure (MTTF) or lifetime percentiles of products based on degradation

information, which is measured through life testing under high stress-loading conditions

(see Lim and Yum [10], Padgett and Tomlinson [14], Park and Padgett [15], Tsai et

al. [22]). The Brownian motion (BM) and geometric Brownian motion (GBM) processes

have been widely used to model the degradation of products under stresses over time (see

Liao and Tseng [9], Lim and Yum [10], Tsai et al. [22], Tsai et al. [24], Whitmore [27]).

However, because the BM and GBM processes can generate negative increments, they
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are unsuitable to model the degradation processes of products. To overcome the draw-

back of generating negative increments from the BM and GBM processes, the gamma

processes (GPs) can be used to model the degradation processes of highly reliable prod-

ucts subject to an accelerated degradation test (ADT), instead. A GP always exhibits a

monotone-increasing accumulative pattern and hence is more suitable to model a degra-

dation process for performing reliability assessment than the BM or GBM process (see

Boulanger and Escobar [3], Guan and Tang [6], Park and Padgett [15], Park and Padgett

[16], Park and Padgett [17], Peng [18], Tsai et al. [23], Tseng et al. [26]).

To save test cost and time, the degradation test can be conducted with two stress

loading variables to accelerate product damage (see Park and Padgett [16], Park and

Padgett [17]). In this study, a GP with two stress loading variables, namely the ambient

temperature and drive current, was considered to model the damage processes of highly

reliable products. We use the term 2ADT-GP to dente the ADT with two stress variables

in a GP hereafter. The ambient temperature and drive current are two widely used stress

variables for engineering applications. Let Xt denote the cumulative damage path of a

highly reliable product and follow the GP with a positive shape coefficient νL and a

positive scale parameter β, where only the shape coefficient νL depends on the stress

level L of the degradation test. The product is classified as a failure if Xt passes a given

threshold, C, before the termination of the degradation test. Otherwise, the product is

classified as a survivor. Let S denote the first passage time of the cumulative damage

path over the given threshold, C. The working assumptions (A1) to (A5) of Tsai et al.

[25] are also applied in this study for the 2ADT-GP and outlined as follows:

(A1) In the degradation test, k runs of comprising various stress levels are applied to the

tested units. Run i represents a combination of levels for the two stress loading

variables and is labeled by L′

i = (L′

1i, L
′

2i) for i = 1, 2, . . . , k.

(A2) A total of ni units are allocated to the run i of degradation test, and all these units

are subject to the stress loading L′

i.

(A3) The two components of L′

i, i = 1, 2, . . . , k, are respectively standardized by

L1i =
1/L′

10 − 1/L′

1i

1/L′

10 − 1/L′

1M

(1.1)

for ambient temperature, and

L2i =
log(L′

2i)− log(L′

20)

log(L′

2M )− log(L′

20)
(1.2)

for drive current, where L′

j0, and L′

jM respectively represent the normal-used stress

loading levels and the maximum stress loading levels for the stress loading variable

j, j = 1, 2. Therefore, L10 = L20 = 0, L1M = L2M = 1 and 0 < L1i ≤ 1, 0 < L2i ≤ 1

for i = 1, 2, . . . , k. L1i and L2i are scale-free and increasing functions of L′

1i, and

L′

2i, respectively.
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(A4) Let the starting time of the degradation test tij0 = 0 and the initial damage of

each unit in the life test be xij0 = 0. The damage of each surviving unit in run

i is measured at times tij1 < tij2 < ... < tijmi
and labeled by xij1, xij2, . . . , xijmi

,

respectively. The damage increment yijh = xijh − xij(h−1) follows a two-parameter

gamma distribution with a shape coefficient δijh = νLi
τijh and a scale parameter

β, where τijh = tijh − tij(h−1) , for j = 1, 2, . . . , qi, h = 1, 2, . . . ,mi, and i =

1, 2, . . . , k. Hence, the probability density function (PDF) of the two-parameter

gamma distribution is defined by

fA(yijh; τijh) =
1

Γ(δijh)β
δijh

y
δijh−1
ijh e−yijh/β , yijh > 0. (1.3)

(A5) The parameter νLi
in the shape parameter δijh of the gamma distribution can be

expressed in terms of L1i and L2i through the generalized Eyring model (GEM) as

νLi
= exp(γ0 + γ1L1i + γ2L2i + γ3L1iL2i), i = 1, 2, . . . , k, (1.4)

where γ0 < 0, γ1, γ2 > 0, and γ3 ∈ R.

The GEM model in (1.4) is a generalized function that includes three widely used

single-loading acceleration models for degradation test as special cases, for example, the

Arrhenius law model, power law model, and exponential law model, when only either L1

or L2 is considered. The precise distribution of S may be too complicated for practical

use. Therefore, Park and Padgett provided an approximation procedure in Park and

Padgett [15] and showed that the distribution of S could be approximated by the inverse

Gaussian distribution if Cβ/
√
νL ≫ Cβ/νL (i.e.,

√
νL ≫ 1), where Cβ = (C − x0)/β.

Let µL = Cβ/νL and λL = C2
β/νL. When µL is very large, the approximation is effective

even if
√
λL is not excessively greater than µL (see Park and Padgett [15]). The PDF of

the inverse Gaussian distribution is defined by

gS(s;C) ≡ gS(s;x0 = 0, C) =
Cβ/

√
νL√

2πs3
exp

[

−νL(s− Cβ/νL)
2

2s

]

. (1.5)

The PDF of the damage increments observed from the GP can be described by Equation

(1.3) for j = 1, 2, . . . , ni, h = 1, 2, . . . ,mi, and i = 1, 2, . . . , k, where δijh = νLi
τijh.

Let D = {(yijh, τijh), i = 1, 2, . . . , k, j = 1, 2, . . . , ni, h = 1, 2, . . . ,mi} denote the

data set of damage increments observed. The likelihood function for the 2ADT-GP can

be presented as

L(Θ;D) ∝ Πk
i=1Π

ni

j=1Π
mi

h=1

1

Γ(δijh)β
δijh

y
δijh−1
ijh e−yijh/β , (1.6)

where Θ = (θ1, θ2, θ3, θ4, θ5) = (β, γ0, γ1, γ2, γ3). The maximum likelihood estimate

(MLE) Θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4, θ̂5) of Θ = (θ1, θ2, θ3, θ4, θ5) is the maximizer of the log-

likelihood function, log(L(Θ;D)). A summary of the technique terms is given as follows:
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Technique term Full name

ACO ant colony optimization

ADT accelerated degradation test

2ADT-GP two stress variables ADT with a gamma process

BM Brownian motion

CP crossover probability

GA genetic algorithm

GA-QN combination of GA and QN

GBM geometric Brownian motion

GEM generalized Eyring model

GP gamma processes

LED light emitting diode

L-BFGS-B limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm

M-H MCMC Metropolis-Hastings MCMC

MCMC Markov chain Monte Carlo

MCMCG MCMC algorithm with using inverse gamma distribution as prior

MCMCU MCMC algorithm with using independent uniform distributions as prior

MI maximum number of iterations

MLE maximum likelihood estimate

MP mutation probability

MTTF mean time to failure

MSE mean square error

PDF probability density function

PS population size

PSO particle swarm optimization

QN quasi-Newton method

SNR signal to noise ratio

SSO swallow swarm optimization

1.2. Motivation and organization

The closed form of the MLE, Θ̂, for the 2ADT-GP cannot be obtained and an iter-

ative procedure, such as the quasi-Newton (QN) method, must be applied to search the

numerical values of all components in Θ̂ through the system of nonlinear likelihood equa-

tions. Because the terms, log(Γ(νLi
τijh)) and νLi

τijh, with parameters of high dimension

generate the complexity of the nonlinear likelihood equations, the computation results

for the MLEs could not be accurate and hence induce relatively large bias and large

mean squared error (MSE) based on our simulation experience. In this paper, an artifi-

cial intelligence computing method, namely genetic algorithm (GA) method, the GA-QN

that is the method of combining the GA and QN, and the Gibbs sampling Markov chain

Monte Carlo algorithm method (Gibbs MCMC), and Metropolis-Hastings Markov chain

Monte Carlo algorithm (M-H MCMC) method are employed to search the MLE, Θ̂, of
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the GP parameter, Θ. The Gibbs MCMC and M-H MCMC methods can also be used to

evaluate the Bayesian estimator of Θ. To implement the GA method, the GA parameters

must be decided. To avoid choosing the GA parameters subjectively, the Taguchi design

method is used for reaching an optimal design selection of the GA method.

We understand other potential soft computing methods besides the GA, for example,

the algorithms of particle swarm optimization (PSO), swallow swarm optimization (SSO)

or ant colony optimization (ACO) could also work well to optimize a complicated target

function. We believe that the PSO-QN, SSO-QN or ACO-QN could works similarly to

improve the performance of the QN method to search reliable MLEs of the 2ADT-GP

parameters. The major purpose in this paper is to study the efficiency of the combined

soft computation and gradient computing methods for searching reliable MLEs of the

2ADT-GP parameters. In this study, we use the GA-QN method for illustration. The

performance of the GA-QN and MCMC methods are evaluated through using Monte

Carlo simulation. The remainder of this paper is organized as follows: In Section 2,

the GA method is addressed, and the Taguchi design method is implemented to reach

an optimal GA design. In Section 3, the Gibbs MCMC and M-H MCMC methods are

constructed analytically. The performance of the GA, QN, GA-QN and MCMC methods

are investigated through simulation study, and the application via the data set of light-

emitting diodes (LEDs) is presented in Section 4. Concluding remarks are provided in

Section 5.

2. The GA Method

The GA is a widely used artificial intelligence computing method that can help prac-

titioners to obtain high-quality estimates of model parameters for the implementation

of system evaluation. The GA, introduced by Holland in 1975, is an evolutionary al-

gorithm that generates solutions to optimize a target function. Many researchers have

investigated the applications of the GA for optimization (see Akbari [1], Baudry et al.

[2], Ferreira [5], Holland [8], Nicholson [12], Scrucca [20], Ting [21], Zhang et al. [28]).

To determine the ranges of GA parameters is an issue for using a GA method. We

understand several exiting studies have suggested methods to determine appropriate nu-

merical ranges of the GA parameters. In this study, we would like to provide a feasible

and simple method based on the engineering knowledge and computations to overcome

this issue and make the GA workable to maximize the target function of maximum like-

lihood. Typically, engineers can have some knowledge to set up the ranges of the model

parameters in an ADT study. Hence, we can make the applications of GA more effi-

ciently by using the knowledge. The implementation of GA is presented in Figure 1 (see

Ting [20]). The common termination condition(s) can be one or more combinations of

the following conditions,

1. A solution is reached to meet the specific criteria.

2. The given number of iterations is reached.

3. The allocated budget is reached.
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4. The highest ranking solution’s fitness is reached, or the solutions cannot be improved
by successive iterations.

Figure 1: Flowchart of a GA.

When using the GA method, the GA parameters must be subjectively established.
No absolute guidelines can be used to select these parameters. In fact, an optimal param-
eter combination design of GA depends on study cases. The determination of parameters,
namely the population size (PS), crossover probability (CP), mutation probability (MP),
and maximum number of iterations (MI), depends on the target function to be optimized
and the working data sets. The reference ranges for parameters to implement a GA are
50%-100% for the PS, 60%-90% for the CP, and 5%-10% for the MP. The MI depends
on the computation time.
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Table 1: Factors and their levels for the GA.

Factors
Levels

1 2 3 4
PS 50 70 90 100
CP 0.60 0.70 0.80 0.90
MP 0.05 0.07 0.08 0.10
MI 100 150

To avoid choosing the GA parameters subjectively, the Taguchi design method is

used to reach an optimal GA design for the estimation of the GP parameters. Let the

PS, CP, MP, and MI of the GA be the factors in the Taguchi design method. Table 1

displays their levels for a 2× 43 = 128 factorial design. The L32 orthogonal array is used

to reduce the total 2 × 43 = 128 experimental runs to 32 runs to achieve an optimal

design for the PS, CP, MP, and MI of the GA. Let y = − log(L(Θ;D)), then y > 0. The

minimum signal to noise ratio (SNR) can be evaluated on the basis of repetitions of yj
for j = 1, 2, . . . , ny. The SNRs are evaluated by

SNRi = −10× log10





ny
∑

j=1

y2ji
ny



 , i = 1, 2, . . . , 32. (2.1)

The optimal parameter combinations of PS, CP, MP and MI in Table 1 are used to

implement the GA method for this study. The implementation of using Taguchi design

method based on the data will be studied in Section 4.

3. Markov Chain Monte Carlo Methods

In this section, the MCMC methods are established for 2ADT-GP. Assume that the

model parameters θ1, θ2, θ3, θ4, and θ5 have a joint prior PDF gΘ(θ1, θ2, θ3, θ4, θ5). The

posterior likelihood function is represented as

Pr(Θ;D) ∝ L(Θ;D)gΘ(θ1, θ2, θ3, θ4, θ5). (3.1)

The analytic form of the marginal posterior distribution in Equation (3.1) is often dif-

ficult to obtain, and numerical integration is also difficult to implement for obtain-

ing the marginal posterior distribution. The M-H MCMC method (see Hastings [7],

Metropolis et al. [11], Ntzoufras [13]) is applied in this study to determine the MLE

Θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4, θ̂5) by establishing a noninformative prior for the prior density func-

tion gΘ(.). In this study, the squared error loss function is considered for implementing

Bayesian estimation. Because the conjugate type of prior distribution can be found only

for θ1 but no conjugate type of prior distribution for θ2, θ3, θ4, and θ5. The joint prior

PDF is given below for this study:

gΘ(θ1, θ2, θ3, θ4, θ5) = π1(θ1)π2(θ2)π3(θ3)π4(θ4)π5(θ5), (3.2)
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where π1(θ1) is the PDF of the conjugate-type inverse gamma distribution, and πj(θj) ∝ 1

for j = 2, 3, 4 and 5. Thus, gΘ(θ1, θ2, θ3, θ4, θ5) can be presented as

gΘ(θ1, θ2, θ3, θ4, θ5) ∝
ηλ

Γ(λ)
θ−λ−1
1 e−η/θ1 , θ1, η, λ > 0. (3.3)

Then we can obtain the posterior distribution of Θ, given data D as

Pr(Θ;D) ∝ Πk
i=1Π

ni

j=1Π
mi

h=1

θ
(δijh+λ)−1
1

Γ(δijh)
y
δijh−1
ijh e−(η+yijh)/θ1 . (3.4)

The Bayesian estimates of θi, i = 1, 2, . . . , 5, are close to the MLEs for Equation (1.6)

if the hyperparameters λ and η are selected to have a big variance of θ1 according to the

PDF in Equation (3.3). Using Equation (3.4), we can obtain the conditional marginal

PDF of θi, given Θ−i, where Θ−i = (θj1 , θj2 , θj3 , θj4) with the integer i 6∈ {j1, j2, j3, j4}
and 1 ≤ j1 < j2 < j3 < j4 ≤ 5. The analytic procedure used to obtain the conditional

marginal PDF of θi is outlined below. To update θ1, the following conditional marginal

posterior density function of θ1, given θ2, θ3, θ4, and θ5, is used:

g1(θ1; θ2, θ3, θ4, θ5) = d−1
1 Πk

i=1Π
ni

j=1Π
mi

h=1θ
−(δijh+λ)−1
1 e−(η+yijh)/θ1 , (3.5)

where

d1 =

∫

∞

0
Πk

i=1Π
ni

j=1Π
mi

h=1θ
−(δijh+λ)−1
1 e−(η+yijh)/θ1dθ1.

The conditional marginal posterior distribution of θ1, given θ2, θ3, θ4, and θ5, in Equation

(3.5) is a product of inverse gamma distributions, which have the shape parameters

δijh + λ and scale parameters η + yijh for j = 1, 2, . . . , ni, h = 1, 2, . . . ,mi, and i =

1, 2, . . . , k.

To update θj for j = 2, 3, 4, and 5, the following conditional marginal posterior

distributions are used:

g2(θ2; θ1, θ3, θ4, θ5) = d−1
2 Πk

i=1Π
ni

j=1Π
mi

h=1

1

Γ(δijh)θ
A0

1

yA0

ijh, (3.6)

g3(θ3; θ1, θ2, θ4, θ5) = d−1
3 Πk

i=1Π
ni

j=1Π
mi

h=1

1

Γ(δijh)θ
A1

1

yA1

ijh, (3.7)

g4(θ4; θ1, θ2, θ3, θ5) = d−1
4 Πk

i=1Π
ni

j=1Π
mi

h=1

1

Γ(δijh)θ
A2

1

yA2

ijh, (3.8)

g5(θ5; θ1, θ2, θ3, θ4) = d−1
5 Πk

i=1Π
ni

j=1Π
mi

h=1

1

Γ(δijh)θ
A3

1

yA3

ijh, (3.9)

where A0 = τijhe
θ2 , A1 = τijhe

θ3L1i , A2 = τijhe
θ4L2i , and A3 = τijhe

θ5L1iL2i ; and

d2 =

∫ 0

−∞

Πk
i=1Π

ni

j=1Π
mi

h=1

1

Γ(δijh)θ
A0

1

yA0

ijhdγ0,
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d3 =

∫

∞

0
Πk

i=1Π
ni

j=1Π
mi

h=1

1

Γ(δijh)θ
A1

1

yA1

ijhdγ1,

d4 =

∫

∞

0
Πk

i=1Π
ni

j=1Π
mi

h=1

1

Γ(δijh)θ
A2

1

yA2

ijhdγ2,

and

d5 =

∫

∞

−∞

Πk
i=1Π

ni

j=1Π
mi

h=1

1

Γ(δijh)θ
A3

1

yA3

ijhdγ3,

Let G1(θ1; Θ−1), G2(θ2; Θ−2), G3(θ3; Θ−3), G4(θ4; Θ−4) and G5(θ5; Θ−5) denote the con-

ditional cumulative distribution functions, of which the conditional PDFs are defined by

Equations (3.5)-(3.9), respectively. The Bayesian method with Gibbs MCMC method

can be implemented using Algorithm 1.

Algorithm 1: the Gibbs MCMC for the GP

Step 1: At iteration i = 0, randomly generate the Gibbs sampling initial states, θ
(0)
j ,

for j = 1, 2, · · · , 5, from their respective prior distribution.

Step 2: At iteration i = i+ 1, perform the following steps:

Step 2.1: Generate θ
(i)
1 from G1(θ1; θ

(i−1)
2 , θ

(i−1)
3 , θ

(i−1)
4 , θ

(i−1)
5 );

Step 2.2: Generate θ
(i)
2 from G2(θ2; θ

(i)
1 , θ

(i−1)
3 , θ

(i−1)
4 , θ

(i−1)
5 );

Step 2.3: Generate θ
(i)
3 from G3(θ3; θ

(i)
1 , θ

(i)
2 , θ

(i−1)
4 , θ

(i−1)
5 );

Step 2.4: Generate θ
(i)
4 from G4(θ4; θ

(i)
1 , θ

(i)
2 , θ

(i)
3 , θ

(i−1)
5 );

Step 2.5: Generate θ
(i)
5 from G5(θ5; θ

(i)
1 , θ

(i)
2 , θ

(i)
3 , θ

(i)
4 ).

Step 3: Go to Step 2 until i = N , where N is a huge number. Then Go to Step 4.

Step 4: Based on squared error loss function, the Bayesian estimate of θj is the posterior

mean that can be approximated by 1
N−N0

∑N
i=N0+1 θ

(i)
j , where N0(< N) chains are

used for burn-in for j = 1, 2, . . . , 5.

In practice, WinBUGS or OpenBUGS are helpful for implementing the Bayesian es-

timation with the MCMC algorithm method. Gibbs sampling is a special case of M-

H sampling that always accepts the random value. Hence, practitioners can simu-

late N − N0 random variables of θi sequentially from gi(θi; Θ−i) (see Ntzoufras [13]).

The M-H MCMC algorithm method is implemented to generate the MCMC samples

{θ(i)j , j = 1, 2, . . . , 5} for i = 1, 2, . . . by using the Algorithm 2:

Algorithm 2: the M-H MCMC for GP

Step 1: At iteration i = 0, establish the initial states, θ
(0)
j for j = 1, 2, ..., 5, which can

be generated from the respective prior distribution.



244 JYUN-YOU CHIANG, JIANPING ZHU, YU-JAU LIN, Y. L. LIO AND TZONG-RU TSAI

Step 2: Propose transition probabilities qj(θ
(∗)
j |θ(i)j ) for θj from the ith state, θ

(i)
j , to

the (i+ 1)th state, θ
(∗)
j for j = 1, 2, · · · , 5.

Step 3: At iteration i = i+ 1, perform the following Steps:

Step 3.1: Generate θ
(∗)
1 from q1(θ

(∗)
1 ; θ

(i)
1 ) and u ∼ U(0, 1). Update θ

(i+1)
1 by θ

(i+1)
1 =

θ
(∗)
1 if

u ≤ min

{

1,
g1(θ

(∗)
1 ; θ

(i)
2 , θ

(i)
3 , θ

(i)
4 , θ

(i)
5 )

g1(θ
(i)
1 ; θ

(i)
2 , θ

(i)
3 , θ

(i)
4 , θ

(i)
5 )

q1(θ
(∗)
1 |θ(i)1 )

q1(θ
(i)
1 ; θ

(∗)
1 )

}

,

and θ
(i+1)
1 = θ

(i)
1 , otherwise.

Step 3.2: Generate θ
(∗)
2 from q2(θ

(∗)
2 ; θ

(i)
2 ) and u ∼ U(0, 1). Update θ

(i+1)
2 by θ

(i+1)
2 =

θ
(∗)
2 if

u ≤ min

{

1,
g2(θ

(∗)
2 ; θ

(i+1)
1 , θ

(i)
3 , θ

(i)
4 , θ

(i)
5 )

g2(θ
(i)
2 ; θ

(i+1)
1 , θ

(i)
3 , θ

(i)
4 , θ

(i)
5 )

q2(θ
(∗)
2 |θ(i)2 )

q2(θ
(i)
2 ; θ

(∗)
2 )

}

,

and θ
(i+1)
2 = θ

(i)
2 , otherwise.

Step 3.3: Generate θ
(∗)
3 from q3(θ

(∗)
3 ; θ

(i)
3 ) and u ∼ U(0, 1). Update θ

(i+1)
3 by θ

(i+1)
3 =

θ
(∗)
3 if

u ≤ min

{

1,
g3(θ

(∗)
3 ; θ

(i+1)
1 , θ

(i+1)
2 , θ

(i)
4 , θ

(i)
5 )

g3(θ
(i)
3 ; θ

(i+1)
1 , θ

(i+1)
2 , θ

(i)
4 , θ

(i)
5 )

q3(θ
(∗)
3 |θ(i)3 )

q3(θ
(i)
3 ; θ

(∗)
3 )

}

,

and θ
(i+1)
3 = θ

(i)
3 , otherwise.

Step 3.4: Generate θ
(∗)
4 from q4(θ

(∗)
4 ; θ

(i)
4 ) and u ∼ U(0, 1). Update θ

(i+1)
4 by θ

(i+1)
4 =

θ
(∗)
4 if

u ≤ min

{

1,
g4(θ

(∗)
4 ; θ

(i+1)
1 , θ

(i+1)
2 , θ

(i+1)
3 , θ

(i)
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(i)
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(∗)
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}

,

and θ
(i+1)
4 = θ

(i)
4 , otherwise.

Step 3.5: Generate θ
(∗)
5 from q5(θ

(∗)
5 ; θ

(i)
5 ) and u ∼ U(0, 1). Update θ

(i+1)
5 by θ

(i+1)
5 =

θ
(∗)
5 if

u ≤ min

{

1,
g5(θ

(∗)
5 ; θ

(i+1)
1 , θ

(i+1)
2 , θ

(i+1)
3 , θ

(i+1)
4 )

g5(θ
(i)
5 ; θ

(i+1)
1 , θ

(i+1)
2 , θ

(i+1)
3 , θ

(i+1)
4 )

q5(θ
(∗)
5 |θ(i)5 )

q5(θ
(i)
5 ; θ

(∗)
5 )

}

,

and θ
(i+1)
5 = θ

(i)
5 , otherwise.

Step 4: Go to Step 3 until i = N , where N is a huge number. Then go to Step 5.

Step 5: Based on squared error loss function, the Bayesian estimate of θj is the posterior

mean that can be approximated by 1
N−N0

∑N
i=N0+1 θ

(i)
j , where N0(< N) chains are

used for burn-in for j = 1, 2, . . . , 5.
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4. An Example and Simulations

Tsai et al. [25] proposed an inference method for the GP to evaluate the reliability

of transistor outline can-packaged high-power LEDs. The degradation of LEDs was ob-

served using a two-variable accelerated degradation test (ADT) with five stress loading
level combinations. The absolute ambient temperature in degree Celsius and drive cur-

rent in milliamperes (mÅ) were set to be (45◦C, 650 mÅ), (60◦C, 650 mÅ), (75◦C, 450

mÅ), (75◦C, 550 mÅ), and (75◦C, 650 mÅ). The normal use conditions were at 25◦C

and 350 mÅ. A KEITHLEY 2430 pulse source current meter with an OL500 integrating
sphere and a CAS140B spectroradiometer were used to measure the total light density

of the LED source. An LED was classified as a failure if it lost 30% or more light density

of its initial light density.

Using the GP model for this light degradation data set of LEDs discussed in Tsai et

al. [25], the MLEs, θ̂1 = 0.662, θ̂2 = −2.902, θ̂3 = 0.577, θ̂4 = 0.533 and θ̂5 = 0.531, were
obtained through the method of Limited-memory Broyden-Fletcher-Goldfarb-Shanno

algorithm (L-BFGS-B) QN, which is a modification from the L-BFGS optimization

method. The L-BFGS optimization method uses a limited-memory modification for

the BFGS QN method to obtain the estimates of model parameters for optimizing a
specified target function. The L-BFGS-B method proposed in Byrd et al. [4] extends

the L-BFGS method to handle simple box constraints on the model parameters and is

hence a popular method for parameter estimation.

The QN methods are easy to use and can efficiently obtain the MLEs of model

parameters if MLE determination converges within the parameter space. However, the
QN methods are often sensitive to the initial parameter solutions and could not result

in proper estimates because of the divergence of iterative procedure during the solution

search. In this study, we evaluate the estimation performance of the L-BFGS-B QN, GA,

and MCMC methods for obtaining the MLEs of the 2ADT-GP parameters. The model

parameters are set up according to the MLEs from the LED example in Tsai et al. [25];
that is, we used θ1 = 0.662, θ2 = −2.902, θ3 = 0.577, θ4 = 0.533 and θ5 = 0.531 for the

2ADT-GP parameters to generate the LED damage paths. The simulation framework is

given in the Algorithm 3.

Algorithm 3: The simulation framework

Step 1: Generating a simulation run, in which 60 units under the 2ADT-GP with

stress loading combinations: (L′

1i, L
′

2i)=(25,350), (45, 650), (60, 650), (75, 450),

(75,550), and (75, 650) are generated. Each stress loading combination con-
tained 10 test units, and each unit was measured 13 times. The termination

time is 26 weeks.

Step 2: Using Taguchi design with Table 2 and Step 1 to identify an optimal GA pa-

rameter combination to implement the GA method. Each GA parameter com-
bination of PS, CP, MP and MI in Table 2 with each data set in the simulation

run is implemented ny = 10 times to obtain the value of SNR via Equation (2.1)

to identify the optimal GA parameter combination. In this step, we repeat the

GA evaluation 10 times for obtaining a reliable SNR value.
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Step 3: Based on the optimal GA design that obtained in Step 2, the GA, L-BFGS-

B QN and MCMC methods are used to obtain the MLEs of the 2ADT-GP

parameters.

Step 4: Repeat Step 1 and Step 3 B times and labeled the MLE of θj in the ith sim-

ulation run by θ̂
(i)
j , i = 1, 2, . . . , B and j = 1, 2, . . . , 5. The bias and MSE of

θ̂j are evaluated by
(

1
B

∑B
i=1 θ̂

(i)
j

)

− θj and
1
B

∑B
i=1(θ̂

(i)
j − θj)

2, respectively for

j = 1, 2, . . . , 5. In this study, we adopt B = 10000.

Base on the knowledge of the degradation measurements of LED discussed in Park

and Padgett [16], the parameter space is suggested as Ω = {θ1, θ3, θ4 > 0, θ2 < 0 and θ5 ∈
R}. Because the parameter θ2 is related to the MTTF of LEDs under the normal use

condition and this type of LED is a highly reliable product, θ2 should be negative and

not close to 0. The parameter θ1 in the gamma distribution must not be too high.

This knowledge facilitates the selection of the initial parameter solutions and the prior

distribution when using the L-BFGS-B QN, GA, and MCMC methods.

Using the simulated GP data sets, with the parameters θ1 = 0.662, θ2 = −2.902,

θ3 = 0.577, θ4 = 0.533 and θ5 = 0.531, to establish the Taguchi L32 design, we obtained

10 values of y from GP and the corresponding SNR for each combination of factor levels.

Table 2 and Figure 2 summarize these results.

Figure 2 shows the main effect plots for SNRs. The parameters of PS = 100, CP

= 0.7, MP = 0.1, and MI = 150 are suggested for using the GA method to obtain the

MLEs of θ̂j, j = 1, 2, . . . , 5 for the 2ADT-GP modeling of the simulated LED data set.

On the basis of the normalized formulas for stress levels in (A3), the parameter spaces of

θ3 and θ4 can be of positive real numbers over small intervals. Moreover, the parameter

space of θ5 can be extended from the parameter spaces of θ3 and θ4 to also include the

negative part. Hence, consider the parameter space

B1 = {0 < θ1 < 1.5,−4.5 < θ2 < 0, 0 < θ3, θ4 < 3,−3 < θ5 < 3} (4.1)

for the 2ADT-GP model with this type LED data set. Using Algorithm 2: M-H MCMC

through OpenBUGS package with a non-informative prior inverse Gamma for θ1, burn-in

N0 = 1000 and N = 10000 chains to obtain a MCMCG MLEs for θj, j = 1, 2, . . . , 5.

Please note that the OpenBUGS can decide symmetric transition probabilities to im-

plement the MCMC method. Finally, boxplots for data sets each contains 1000 GA

MLEs, QN MLEs, GA-QN MLEs, MCMCG MLEs and MCMCU MLEs, respectively,

are generated.

Table 3 displays biases and MSEs for GA MLEs, QN MLEs and GA-QN MLEs.

In this study, the initial inputs for searching the MLEs, through using the L-BFGS-B

QN method, was randomly generated from the uniform distribution over the parameter

space of θj, j = 1, 2, . . . , 5. Compared with the GA MLEs in Table 3, the L-BFGS-B QN

method was an unstable approach that yielded high MSEs for the estimates of θ2 to θ5.

Moreover, the bias estimates of the QN MLEs of θ2 to θ5 were also higher than those

of the GA MLEs. The mean of QN MLEs of θ5 in 10000 simulation runs are negative,
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Table 2: Taguchi L32 design and SNRs.

PS CP MP MI y1 y2 y3 y4 y5 y6

50 0.6 0.05 100 941.922 1015.15 916.864 952.822 999.314 919.111

70 0.6 0.07 100 976.173 933.737 955.192 969.113 944.17 964.909

90 0.6 0.08 100 974.916 950.927 948.661 942.994 932.631 894.729

100 0.6 0.1 100 960.832 941.545 919.696 942.98 937.412 948.339

50 0.7 0.05 100 967.042 934.785 946.898 960.639 958.28 854.763

70 0.7 0.07 100 931.039 934.4 913.039 926.903 962.288 917.379

90 0.7 0.08 100 957.906 886.611 962.214 945.084 895.959 914.5

100 0.7 0.1 100 958.622 935.851 911.972 905.114 955.148 917.728

70 0.8 0.05 100 923.606 1012.57 910.022 936.256 962.264 934.382

50 0.8 0.07 100 995.235 941 963.047 979.953 894.779 912.932

100 0.8 0.08 100 922.478 889.798 900.425 885.879 950.364 945.046

90 0.8 0.1 100 943.006 939.949 912.794 920.925 957.454 934.615

70 0.9 0.05 100 963.385 881.436 930.387 984.857 948.986 910.278

50 0.9 0.07 100 939.611 997.745 963.69 916.826 951.908 935.655

100 0.9 0.08 100 931.261 931.844 973.279 928.076 923.646 914.948

90 0.9 0.1 100 905.884 926.517 928.559 935.173 965.714 926.65

100 0.6 0.05 150 920.87 956.541 898.705 996.758 917.899 926.316

90 0.6 0.07 150 886.139 922.117 938.448 945.65 950.452 949.832

70 0.6 0.08 150 942.36 967.161 923.389 908.16 936.322 910.826

50 0.6 0.1 150 942.879 956.175 949.609 900.205 941.156 906.507

100 0.7 0.05 150 952.917 929.661 936.219 915.545 922.269 904.73

90 0.7 0.07 150 955.409 952.785 921.467 945.344 895.968 964.978

70 0.7 0.08 150 885.627 904.002 969.674 891.222 936.856 902.418

50 0.7 0.1 150 894.707 909.705 910.821 955.033 917.511 910.152

90 0.8 0.05 150 900.643 936.683 895.132 955.935 955.115 956.195

100 0.8 0.07 150 966.335 964.529 910.257 934.316 908.35 919.595

50 0.8 0.08 150 940.544 956.166 924.477 939.998 975.761 944.249

70 0.8 0.1 150 940.513 911.937 874.946 917.261 936.731 907.965

90 0.9 0.05 150 918.969 906.899 945.306 940.268 970.355 947.742

100 0.9 0.07 150 928.483 947.861 924.293 938.196 940.554 952.37
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Table 3: (Continued)

PS CP MP MI y7 y8 y9 y10 SNR

50 0.6 0.05 100 943.97 955.232 964.817 894.869 -59.564

70 0.6 0.07 100 916.532 920.574 938.605 915.584 -59.497

90 0.6 0.08 100 951.162 951.925 973.953 929.674 -59.512

100 0.6 0.1 100 883.455 962.049 927.788 931.987 -59.424

50 0.7 0.05 100 880.853 931.221 1009.26 907.465 -59.426

70 0.7 0.07 100 947.423 955.094 924.528 1018.82 -59.495

90 0.7 0.08 100 945.971 924.306 926.089 918.282 -59.351

100 0.7 0.1 100 906.374 955.818 894.021 888.269 -59.306

70 0.8 0.05 100 899.413 906.396 933.247 952.535 -59.44

50 0.8 0.07 100 957.27 918.571 935.919 865.005 -59.436

100 0.8 0.08 100 952.1 935.82 902.225 927.586 -59.29

90 0.8 0.1 100 895.733 933.263 948.171 930.519 -59.386

70 0.9 0.05 100 970.313 897.97 958.887 945.428 -59.46

50 0.9 0.07 100 937.344 924.883 963.201 913.307 -59.506

100 0.9 0.08 100 950.507 970.927 916.068 966.621 -59.471

90 0.9 0.1 100 921.832 883.787 922.91 945.634 -59.337

100 0.6 0.05 150 938.692 970.77 953.326 941.263 -59.486

90 0.6 0.07 150 973.094 932.044 922.64 975.078 -59.461

70 0.6 0.08 150 916.769 906.009 937.882 915.152 -59.338

50 0.6 0.1 150 904.712 855.527 954.7 945.921 -59.335

100 0.7 0.05 150 944.015 927.151 899.213 957.453 -59.361

90 0.7 0.07 150 926.205 961.607 939.539 938.89 -59.467

70 0.7 0.08 150 930.619 967.797 958.365 918.997 -59.342

50 0.7 0.1 150 892.004 932.851 914.971 882.234 -59.202

90 0.8 0.05 150 907.104 961.365 929.925 952.747 -59.42

100 0.8 0.07 150 933.607 894.608 895.409 924.363 -59.327

50 0.8 0.08 150 968.709 912.943 933.983 946.731 -59.504

70 0.8 0.1 150 916.158 902.493 911.112 892.96 -59.194

90 0.9 0.05 150 944.734 945.122 983.316 913.659 -59.48

100 0.9 0.07 150 888.598 889.195 968.405 877.18 -59.332

50 0.9 0.08 150 951.933 954.936 922.322 901.823 -59.314

70 0.9 0.1 150 885.347 950.314 926.706 905.222 -59.385
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Figure 2: Main effect plots for SNRs.

which has an opposite sign of θ5 = 0.531. After carefully checking all simulation outputs,

we found that some QN MLEs used the boundary values of their solution spaces in many

simulation runs. These simulation runs can be considered a type of divergence because of

the absence of proper MLE solutions in their parameter spaces. Because the L-BFGS-B

QN method is sensitive to the initial parameter solutions, improper initial inputs could

also be one reason for the improper MLEs produced by the L-BFGS-B QN method. In

practice, selecting suitable initial parameter solutions for the L-BFGS-B QN method is

difficult. On the basis of this simulation study, we found that the only strength of the

L-BFGS-B QN method over the GA method is that the QN-MLE of θ1 had smaller bias

and MSE than those of the GA-MLE of θ1. The GA-MLE of θ1 underestimated the true

θ1.

It could be a good idea to use the GA MLEs as the initial parameter inputs to search

the QN MLEs. That is, we implement the L-BFGS-B QN method with two steps. The

first step is to find the GA MLEs, then go to the second step to use the GA MLEs as

initial parameter inputs to search the MLEs of model parameters based on the L-BFGS-

B QN method. In this study, the QN MLEs using the GA MLEs as initial solutions are

labeled as GA-QN MLEs. Table 3 shows that the GA-QN MLEs significantly improve
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Table 4: Bias and MSEs of the MLEs.

θ1 θ2 θ3 θ4 θ5
GA MLEs

mean 0.0073 -2.9198 0.5924 0.5844 0.5817
bias -0.6547 -0.0178 0.0154 0.0514 0.0507
MSE 0.4287 0.0892 0.0488 0.0526 0.0637

QN MSEs
mean 0.7620 -2.5791 1.3128 1.2963 -0.6063
bias 0.1000 0.3229 0.7358 0.7663 -1.1373
MSE 0.3089 1.9902 1.6762 1.7074 5.8705

GA-QN MSEs
mean 0.6590 -2.8889 0.5746 0.5310 0.5363
Bias -0.0030 0.0131 -0.0024 -0.0020 0.0053
MSE 0.0026 0.0288 0.0141 0.0146 0.0332

the drawbacks of QN MLEs and perform better than the QN MLEs and GA MLEs with

smaller bias and MSE.

In fact, the parameter space B1 is obtained based on the knowledge of the LED

discussed in Tsai et al. [25]. However, the L-BFGS-B QN method cannot identify effec-

tive solutions over B1. The GA method estimates the parameter θ1 poorly, with a large

bias and MSE. The GA method identifies optimal solutions over B1 using an artificial

intelligence computing method without assuming initial parameter solutions. The per-

formance of the GA method depends on the number of parameters, the complexity of the

target function, and the size of the parameter space. The parameters PS = 100, CP =

0.7, MP = 0.1 and MI = 150, which are obtained from the Taguchi design method, can

be used in the GA method to reduce the subjectivity of parameter selection. Compared

with the L-BFGS-B QN method, the GA method requires more computation time to

obtain the MLEs for parameter estimation. According to Table 3, compared with the

L-BFGS-B QN method, the GA method exhibits higher performance for obtaining the

MLEs of the model parameters except θ1.

If the knowledge of the parameter space is insufficient, the L-BFGS-B QN method

is expected to work relatively poorly and introduce divergence in more simulation cases.

For example, considering the following parameter space:

B2 = {0 < θ1 < 1.5,−4.5 < θ2 < 0, 0 < θ3, θ4 < 5,−5 < θ5 < 5}. (4.2)

In B2, we assume insufficient knowledge of the parameters θ3, θ4, and θ5 such that

a wide range of these three parameters is introduced for searching the MLEs of the

2ADT-GP model parameters on basis of the LED data set. To implement the MCMC

method, we consider the noninformative prior distributions of the gamma with η = 0.001

and λ = 0.0006 for θ1, uniform distribution over (−4.5, 0) for θ2, uniform distribution

over (0, 5) for θ3 and θ4, and uniform distribution over (−5, 5) for θ5. The MLEs θ̂1 to

θ̂5 are obtained through the M-H MCMC method. The estimation performance of the

L-BFGS-B QN, GA, GA-QN and M-H MCMC methods with the parameter space B2
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are compared on the basis of 1000 simulation runs. Figures 3-7 display the simulation

results in boxplots.

Figure 3: The boxplots of the MLEs of θ1.

Figure 4: The boxplots of the MLEs of θ2.

According to Figures 3-7, the GA and L-BFGS-B QN methods perform poorly if
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Figure 5: The boxplots of the MLEs of θ3.

Figure 6: The boxplots of the MLEs of θ4.

the parameter space B2 is used to search the MLEs of the GP model parameters. As

expected, divergence is found for many simulation cases in using the L-BFGS-B QN

method under the parameter space B2, and the L-BFGS-B QN method leads to larger

bias and MSEs. Compared the QN MLEs with the GA MLEs in Figures 3-7, the bias
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Figure 7: The boxplots of the MLEs of θ5.

and MSEs of the GA MLEs are more stable, but the GA method fails to provide a good

estimate for the parameter θ1. The bias and MSEs are inflated when the parameter

space B2 is used for the GA method. The GA method cannot work well in the parameter

space B2, and then the L-BFGS-B QN method using the GA MLEs as initial parameter

solutions only slightly improves the estimation performance. Carefully checking Figures

3-7, we find the GA-QN MLEs have smaller bias and MSEs than those of the QN MLEs.

But most of the GA-QN MLEs of θ5 are negative, and this fact indicates that the GA-QN

MLE cannot be a good estimate of the parameter θ5 = 0.531 when the parameter space

B2 is applied.

The M-H MCMC method is stable when the parameter space B2 is used to search

the MLEs of the GP model parameters. In Figures 3-7, MCMCG MLE represents the

M-H MCMC, which uses the gamma distribution with η = 0.001 and λ = 0.0006 as the

noninformative prior distribution of θ1 and the πj(θj) ∝ 1 as the noninformative prior

distributions for θj, j = 2, 3, 4, and 5. The means of the MCMCG MLEs of θj ’s over

1000 simulation runs are close to the true parameter values, and the bias and MSEs

are smaller. Similar estimation results can be obtained if other noninformative prior

distributions are used. For illustration, we assume that the noninformative prior of θ1 is

U(0, 1.5) and use πj(θj) ∝ 1 as the noninformative prior distributions for θj, j = 2, 3, 4,

and 5. For brevity, only the estimation results are shown in Figures 3-7. The analytic M-

H MCMC with the new noninformative prior distributions can be derived using a similar

procedure as that outlined in Section 3. Let MCMCU MLE denote the M-H MCMC

MLE, which uses U(0, 1.5) as the prior distribution for θ1. According to Figures 3-7,

even with the noninformative prior uniform distribution for θ1, the estimation results
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are still reliable and have small bias and MSEs. Moreover, the means of the MLEs over

1000 simulation runs are close the true parameters. The results in Figures 3-7 indicate

that the MCMC method is less sensitive to the choice of the parameter space, and that it

exhibits higher performance for implementing parameter estimation for GP model than

the GA, L-BFGS-B QN, and GA-QN methods.

On the basis of the simulation results, we found that the M-H MCMC method can

be used to obtain reliable MLEs of the 2ADT-GP parameters if we have knowledge

on the parameter space. The M-H MCMC method based MLE performs better than

the GA, L-BFGS-B QN method and GA-QN method with small bias and MSE under

sharing the same knowledge on the parameter space. The subjective of using M-H

MCMC method is to set up the prior distribution. In the simulation study, we tried

two different noninformative prior distributions and obtained similar estimation results.

Figures 3-7 show that both M-HMCMC estimates, which were obtained by using different

noninformative prior distributions, performs better than the other competitors. We hence

conclude that the M-H MCMC method is more reliable to obtain the estimates of the

2ADT-GP parameters than the GA, L-BFGS-B QN and GA-QN methods.

5. Conclusion

In this paper, the GA method, L-BFGS-B QN method, GA-QN method and two

MCMC methods are suggested to implement parameter estimation for the 2ADT-GP

model with GEM. The 2ADT-GP model has been widely used to evaluate the reliability

of highly reliable products. The Taguchi design method is used to reduce the subjectivity

of parameter selection when implementing the GA method. The analytic Gibbs MCMC

method and the M-H MCMC method are implemented for the GP model. Both MCMC

algorithm methods can be easily implemented through the WinBUGS or OpenBUGS

packages. Intensive simulations are conducted to evaluate the performance of the afore-

mentioned parameter estimation methods for the GP model on the basis of the lumen

degradation data set of LEDs.

The simulation results show that the L-BFGS-B QN method may fail to determine

the MLEs of the GP model parameters because of a divergence problem. This divergence

is mainly caused by the use of improper initial parameter solutions to determine the MLEs

of the 2ADT-GP parameters. The GA method is an artificial intelligence computing

method that avoids this divergence problem and exhibits higher performance than the

L-BFGS-B QN method. However, the GA method cannot provide a reliable MLE for the

scale parameter of the gamma distribution. If the GA MLEs are suitable, combining the

GA and L-BFGS-B QN methods can be a good estimation method for inferring on the

reliability of 2ADT-GP model. The L-BFGS-B QN, GA and GA-QN methods cannot

identify effective parameter solutions if the practitioners have insufficient knowledge to

choose the parameter space. In an ADT study, the engineers often keep knowledge to

roughly set up the ranges of the model parameters. Using engineering knowledge to set

up the ranges of the model parameters can make the application of GA more efficiently.

The Taguchi design method is used to set up the GA parameters for a specific data
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set. The Taguchi method is easy to implement and the users can also consider using

the numerical ranges suggested from literature studies to calibrate the ranges of the GA

parameters.

The MCMC method can overcome the drawbacks of the L-BFGS-B QN, GA and

GA-QN methods, and the MCMC method is less sensitive to the choice of the parameter

space. Hence, the MCMC method is recommended for searching the MLEs of the 2ADT-

GP model parameters. The two MCMC algorithms proposed in this study are reliable

for obtaining the MLEs of the 2ADT-GP model parameters, and both algorithms can be

easily applied through the WinBUGS or OpenBUGS packages. Additional studies should

extend the proposed estimation procedures to other stochastic processes for two-variable

ADTs.
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