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Abstract

This paper deals a continuous review inventory system with a finite number of homoge-

neous sources of customers and multiple vacations of two heterogeneous servers. We have

assumed that two heterogeneous servers who provide phase type services to customers. The

inventory is replenished according to an (s, S) policy and the lead time follows an exponen-

tial distribution. The vacation times of both servers are assumed to be independent and

identically distributed exponential random variables. The joint probability distribution of

the inventory level, number of customers in the system and server status is obtained in the

steady state. Some important performance measures are obtained and the optimality of an

expected total cost rate is shown through numerical illustration.

Keywords: Finite source, phase-type distribution, heterogeneous servers, multiple vaca-

tions.

1. Introduction

Research on inventory systems with service facility has been considered by many

authors over the last two decades. In this system, the demanded item is delivered to the

customer after some service performed on it. Such situations occur when the items in

the stock may require some random time for a service such as installation or preparation.

As this causes the formation of a queue of demands, the inventory managers need to deal

with the queue length, busy period of the server as well as the waiting time apart from

the mean inventory level and reorder rate etc., to evaluate the system performance.

Berman et al. [8] introduced the concept of an inventory management system at a

service facility which uses one item of inventory for each service provided. They assumed

that both demand and service rates are deterministic and constant as such queues can

form only during the stock-outs. They determined optimal order quantity that mini-

mizes the total expected cost rate. Although the paper of Sigman and Simchi-Levi [25]

published earlier than the paper of Berman et al. [8], the formers cited the work of later

and hence we give the credit to the later. Sigman and Simchi-Levi [25] studied a single
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server inventory system in which the demands arrive according to a Poisson process, ex-

ponentially distributed replenishment time and arbitrary distribution for service times.

Using light traffic heuristic method, they derived closed-form solution of the model. The

interested reader may see Arivarignan et al. [3], Arivarignan and Sivakumar [4], Sivaku-

mar and Arivarignan [28], Yadavalli et al. [30], Yadavalli et al. [31], Shophia Lawrence

et al. [24]. Krishnamoorthy et al. [19] provides a partial survey of inventory systems

with service facility.

Arivarignan et al. [5] considered a multi-server inventory system with service facil-

ity in which they assumed that the customers arrive according to a Markovian arrival

process. They assumed that service times, lead times and the life time of an item were

independent exponential distributions. Yadavalli et al. [30] extended this work by in-

troducing the arrival of negative customers. They assumed that the negative customers

arrive according to an independent Markovian arrival process. The service time, the lead

time and the life time of an item were assumed to be independent exponential distribu-

tions. The customer who arrives during the stock-out period or when all the items are

in service or when all the servers are busy entered into an orbit of infinite size and these

customers compete for their service after a random amount of time. The time between

two successive attempts has an exponential distribution.

In actual life the server is unavailable to the customers due to diverse causes. This

includes, the server may be failed or may be employed in other works such as maintenance

or serving secondary customers, or may just blend off. The aim of studying this model

with vacation is, by utilizing the idle time of the server, by which the total average

cost involved may be minimized. Applications arise naturally in call centers with multi-

task employees, customized manufacturing, telecommunication and computer networks,

maintenance activities, production and quality control problems, and so on.

Continuous review inventory systems with server vacation had been receiving little

attention in the literature. The concept of server vacation in inventory with two servers

was introduced by Danial and Ramanarayanan [9]. Danial and Ramanarayanan [10]

studied an (s, S) inventory system in which the server takes a rest when the inventory

level is zero. They assumed that the inter-arrival times between successive demands, lead

times, and the rest times are assumed to follow arbitrary distributions. Krishnamoorthy

and Narayanan [17] considered a production inventory system with server vacation. They

assumed Markovian production process for production times and that service times for

each customer had a phase-type distribution.

Sivakumar [27] considered an inventory system with retrial demands and multiple

server vacation. He assumed independent exponential distributions for inter-demand

times, lead times, inter-retrial times and server vacation times. He also assumed that

all these events are mutually independent. He adopted a multiple vacation policy. Ja-

yaraman et al. [15] considered a perishable inventory system with postponed demands

in which the server takes multiple vacations. They assumed that demand time points

form a Poisson process. The lifetime of each item, vacation time of the server and lead

times follow independent exponential distributions. Padmavathi et al. [21] considered
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a continuous review stochastic (s, S) inventory system with Poisson demands and expo-

nentially distributed lead time. They gave a comparative study of single and modified

vacation policies.

In all the above mentioned articles related to inventory systems with multiple servers,

the servers are assumed to be homogeneous. That is, the service rates are same for all

the servers in the system. On the other hand, heterogeneity of service (the service rate

at each server may be different) is a common feature of many real multi-server inventory

systems. The heterogeneous service mechanisms are invaluable scheduling methods that

allow customers to receive a different quality of service. Heterogeneous service is clearly

a main feature of the operation of almost any manufacturing system. In queueing theory,

the concept of heterogeneous service was studied by many authors, refer Morse [20], Saaty

[23], Krishnakumar and Pavai Madheswari [16], Yue and Yue [32], Efrosinin and Sztrik

[11], Krishnamoorthy and Sreenivasan [18], He and Xiuli-Chao [14], Ammar [2]. But in

inventory theory, this concept was taken by Suganya et al. [29], in which they assumed

MAP arrivals, phase type services, exponential lead times and exponential vacation times.

Most of the studies in the literature of inventory systems assumed the number sources

that generate the primary customers to be infinite and then the flow of primary customers

could be modelled by using Poisson process. However, when the customer population is

of moderate size, it seems more appropriate that the inventory systems should be studied

as a system with a finite source of customers. In these situations, it is often important to

take into account the fact that the rate of generation of new primary customers decreases,

as the number of customers in the system decreases. These types of arrival process can

be modelled by using quasi-random input process.

The concept of finite population has been studied by many authors in queueing

theory (see Falin and Templeton [13], Artalejo [6], Falin and Artalejo [12], Almási et

al. [1], and Artalejo and Lopez-Herrero [7]). But in inventory systems, this concept

was introduced by Sivakumar [26] in which he assumed that the arrival process follows

a quasi-random input process, lifetime for an item, lead times and retrial times for the

customers in the orbit follow independent exponential distributions. Shophia Lawrence

et al. [24] studied the finite-source inventory system with service facility. They assumed

that service times and lead times follow independent phase type distributions and the life

time of an item follows an exponential distribution. Padmavathi et al. [22] studied the

finite source inventory system with postponed demands and modified M vacation policy.

In this work, we focus on the case in which the population of demanding customers is

finite, so that each individual customer generates his/her own flow of primary demands.

The ordering doctrine is (s, S) policy with exponential lead time. The two heterogeneous

servers can avail multiple vacations. The service times for two servers follow independent

phase type distributions and vacation times of two servers follow independent exponential

distributions with different parameters. The joint probability distribution of the number

of customers in the system, inventory level and server status is obtained in the steady

state case.

The rest of the paper is organized as follows: In section 2, we describe the mathemat-

ical model of the problem considered in this work. The analysis of the model is presented
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in section 3 and some key system performance measures are derived in section 4. We

present some numerical studies in the final section. The following common notations

are used throughout this paper: e denotes a column vector of 1’s with appropriate di-

mension, 0 denotes a zero matrix of appropriate dimension, I denotes an identity matrix

with the appropriate dimensions and Ej
i denotes {i, i+ 1, i + 2, . . . , j}.

2. Mathematical Model

We shall describe the concepts of phase-type distribution, so that the characteriza-

tion of the inventory system can be defined.

Consider an absorbing Markov process with one absorbing state 0 and m transient

states 1, 2, . . . ,m. Let the initial probability distribution (0, β) and the rate matrix

T̃ =

[

0 0

T 0 T

]

The matrix T is a sub infinitesimal generator matrix, holding the transition probabilities

among the m transient states, and T 0 contains the absorption probabilities into state 0

from the transient states. Clearly T 0 satisfies Te+T0 = 0. The mean of the phase-type

distribution is given by µ = β(−T )−1e. This phase-type distribution is represented by

(β, T )m.

Model We consider a continuous review (s, S) inventory system. Thus the maximum

capacity of the inventory is S. Whenever the inventory level reaches a prefixed level, say

s(< S), an order for Q(= S − s > s) items is placed, (This assumption Q > s ensures

that the replenished stock is always above s even if the stock is received after depletion

of stock). We make the following assumptions:

• The demands are generated by a finite number of homogeneous sources and the

demand time points form a quasi-random distribution with parameter α. That

is, the probability that any particular source generates a demand in any interval

(t, t + dt) is αdt + o(dt) where o(dt)/dt → 0 as dt → 0 if the source is idle at time

t, and zero if the source is in the service facility at time t, independently of the

behaviour of any other sources.

• The time to deliver an order (or time for replenishing the stock ) is assumed to have

an exponential distribution with parameter θ(> 0).

• Customers are served under the first-come first-served (FCFS) discipline.

• We consider two heterogeneous servers. The service time of server-1 and server-2 are

assumed to have independent phase-type distributions with representations (β,U)m
and (δ, V )n respectively. We write U0 = −Uem, V 0 = −V en, µ1 = β(−U)−1em and

µ2 = δ(−V )−1en.
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• Both servers can avail vacation whenever the inventory level reaches zero or the

customer level reaches zero or both. At the end of a vacation period, the service

commences if there is a positive inventory and at least one customer in the system;

Otherwise, the server takes another vacation immediately and continues in the same

manner until he finds both inventory level and the customer level are positive.

This process holds good for both servers. The length of vacation time for i-th

server is assumed to be independent and identically distributed as exponential with

parameter γi, for i = 1, 2. These are independent of the length of service times, lead

time and arrival process.

3. Analysis

Let L(t),X(t), J1(t), J2(t) respectively, denote the on-hand inventory level, the num-

ber of customers in the system, and the phase of the first server and phase of the second

server distribution at time t.

Further, let the status of the server Y (t) be defined as follows:

Y (t) =



























0, if both the servers are on vacation

1, if the server 1 is busy and the server 2 is on vacation

2, if the server 1 is on vacation and the server 2 is busy

3, if both the servers are busy

From our assumptions, it can be seen that the stochastic process {(L(t), X(t), Y (t),

J1(t), J2(t)), t ≥ 0} is a Markov process with state space

Ω = {(ℓ, x, 0) : ℓ ∈ ES
0 ;x ∈ EN

0 } ∪

{(ℓ, x, 1, j1) : ℓ ∈ ES
1 ;x ∈ EN

1 ; j1 ∈ Em
1 } ∪

{(ℓ, x, 2, j2) : ℓ ∈ ES
1 ;x ∈ EN

1 ; j2 ∈ En
1 } ∪

{(ℓ, x, 3, j1, j2) : ℓ ∈ ES
2 ;x ∈ EN

2 ; j1 ∈ Em
1 ; j2 ∈ En

1 }

To introduce an order on the state space we define the following ordered sets

< ℓ, x, y >=



























((ℓ, x, y)); ℓ∈ES
0 , x∈EN

0 , y=0

((ℓ, x, y, 1), (ℓ, x, y, 2), . . . , (ℓ, x, y,m)); ℓ∈ES
1 , x∈EN

1 , y=1

((ℓ, x, y, 1), (ℓ, x, y, 2), . . . , (ℓ, x, y, n)); ℓ∈ES
1 , x∈EN

1 , y=2

((ℓ, x, y, j1, 1), (ℓ, x, y, j1 , 2), . . . , (ℓ, x, y, j1, n)); ℓ∈ES
2 , x∈EN

2 , y=3, j1∈Em
1

<< ℓ, x >> =















(< ℓ, x, 0 >); ℓ ∈ ES
0 , x ∈ EN

0 ,

(< ℓ, x, 1 >,< ℓ, x, 2 >); ℓ ∈ ES
1 , x ∈ EN

1 ,

(< ℓ, x, 3 >); ℓ ∈ ES
2 , x ∈ EN

2 ,
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≪ℓ≫= (<< ℓ, 0 >>,<< ℓ, 1 >>, . . . , << ℓ,N >>) , x = 0, 1, . . . , S

Hence Ω is ordered as (≪0≫,≪1≫, . . . ,≪S≫). The infinitesimal generator of this

process P can be written in a block partitioned form

P = ((Pij))0,1,...,S

P =

















































≪0≫ ≪1≫ ≪2≫ ≪3≫ · · · ≪s≫ ≪s+1≫ · · · ≪Q≫ ≪Q+1≫ ≪Q+2≫ · · · ≪S−1≫ ≪S≫

≪0≫ A0 0 0 0 · · · 0 0 · · · C0 0 0 · · · 0 0

≪1≫ B1 A1 0 0 · · · 0 0 · · · 0 C1 0 · · · 0 0

≪2≫ 0 B2 A2 0 · · · 0 0 · · · 0 0 C2 · · · 0 0

≪3≫ 0 0 B3 A2 · · · 0 0 · · · 0 0 0

.
.
. 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
≪s≫ 0 0 0 0 · · · A2 0 · · · 0 0 0 · · · 0 C2
≪s+1≫ 0 0 0 0 · · · B3 A3 · · · 0 0 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. · · · 0

.
.
.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
≪s≫ 0 0 0 0 · · · 0 0 · · · 0 0 0 · · · B3 A3

















































The sub matrices are given in Appendix A.

3.1. Steady state analysis

It can be seen from the structure of P that the Markov Process {(L(t), X(t), Y (t),

J1(t), J2(t)), t ≥ 0} on the finite state space Ω is irreducible. Hence the limiting distri-

bution

π(i,k,y,j1,j2) = lim
t→∞

Pr
[

L(t) = i,X(t) = k, Y (t) = j, J1(t) = j1,

J2(t) = j2|L(0),X(0), Y (0), J1(0), J2(0)
]

,

exists.

Let π denote the steady state probability vector. It satisfies

ΠP = 0 and Πe = 1. (3.1)

The vector Π can be represented by

Π = (π(0), π(1), . . . , π(S)).

where

π(i) = (π(i,0), π(i,1), . . . , π(i,N)); i = 0, 1, . . . , S

π(i,k) =















(π(i,k,0)); i = 0, 1, . . . , S, k = 0, 1, . . . , N,

(π(i,k,1), π(i,k,2)); i = 1, 2, . . . , S, k = 1, 2, . . . , N,

(π(i,k,3)); i = 2, 3, . . . , S, k = 2, 3, . . . , N,
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and

π(i,k,j) =







































(π(i,k,j)); i=0, 1, . . . , S, k=0, 1, . . . , N, j=0

(π(i,k,j,1), π(i,k,j,2), . . . , π(i,k,j,m)); i=1, 2, . . . , S, k=1, 2, . . . , N, j=1

(π(i,k,j,1), π(i,k,j,2), . . . , π(i,k,j,n)); i=1, 2, . . . , S, k=1, 2, . . . , N, j=2

(π(i,k,j,j1,1), π(i,k,j,j1,2), . . . , π(i,k,j,j1,n)); i=1, 2, . . . , S, k=1, 2, . . . , N, j=3,

j1=1, 2, . . . ,m

Lemma 1. The steady-state probability vector π corresponding to the infinitesimal

generator matrix P is given by

π(i) = π(Q)Ωi, i = 0, 1, . . . , S,

where

Ωi =







































































































(−1)Q−i(B3A
−1
3 )Q−(s+1)(B3A

−1
2 )s−1B2A

−1
1 B1A

−1
0 , i = 0,

(−1)Q−i(B3A
−1
3 )Q−(s+1)(B3A

−1
2 )s−1B2A

−1
1 , i = 1,

(−1)Q−i(B3A
−1
3 )Q−(s+1)(B3A

−1
2 )s+1−i, i = 2, 3, . . . , s,

(−1)Q−i(B3A
−1
3 )Q−i, i = s+ 1, s + 2, . . . , Q− 1,

I, i = Q,

(−1)Q−2(B3A
−1
3 )Q−(s+1)(B3A

−1
2 )s−1B2A

−1
1 C1A

−1
3

−
S
∑

j=i

(−1)2Q−j+1(B3A
−1
3 )Q−(s+1)(B3A

−1
2 )S−j+1C2A

−1
3 (B3A

−1
3 )j−i, i = Q+ 1,

S
∑

j=i

(−1)2Q−j+1(B3A
−1
3 )Q−(s+1)(B3A

−1
2 )S−j+1C2A

−1
3 (B3A

−1
3 )j−i,

i = Q+ 2, Q+ 3 . . . , S,

and π(Q) can be obtained by solving

π(Q)

[

(

(−1)Q−2(B3A
−1
3 )Q−(s+1)(B3A

−1
2 )s−1B2A

−1
1 C1A

−1
3

−

S
∑

j=Q+2

(

(−1)2Q−j+1(B3A
−1
3 )Q−(s+1)(B3A

−1
2 )S−j+1C2A

−1
3 (B3A

−1
3 )j−(Q+1)

))

B(Q+1)

+AQ +
(

(−1)Q(B3A
−1
3 )Q−(s+1)(B3A

−1
2 )s−1B2A

−1
1 B1A

−1
0

)

C0

]

= 0,

and

π(Q)

[

(−1)Q(B3A
−1
3 )Q−(s+1)(B3A

−1
2 )s−1B2A

−1
1 B1A

−1
0
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+(−1)Q−1(B3A
−1
3 )Q−(s+1)(B3A

−1
2 )s−1B2A

−1
1

+
s

∑

i=2

(

(−1)Q−i(B3A
−1
3 )Q−(s+1)(B3A

−1
2 )s+1−i

)

+

Q−1
∑

i=s+1

(

(−1)Q−i(B3A
−1
3 )Q−i

)

+I+(−1)Q−2(B3A
−1
3 )Q−(s+1)(B3A

−1
2 )s−1B2A

−1
1 C1A

−1
3

−

S
∑

j=Q+2

(

(−1)2Q−j+1(B3A
−1
3 )Q−(s+1)(B3A

−1
2 )S−j+1C2A

−1
3 (B3A

−1
3 )j−(Q+1)

)

+

S
∑

i=Q+2

S
∑

j=i

(

(−1)2Q−j+1(B3A
−1
3 )Q−(s+1)(B3A

−1
2 )S−j+1C2A

−1
3 (B3A

−1
3 )j−i

)

]

e = 1.

Proof. The first equation of equation (3.1) yields the following set of equations :

π(i+1)B1 + π(i)A0 = 0, i = 0, (3.2)

π(i+1)B2 + π(i)A1 = 0, i = 1, (3.3)

π(i+1)B3 + π(i)A2 = 0, i = 2, 3, . . . , s, (3.4)

π(i+1)B3 + π(i)A3 = 0, i = s+ 1, s + 2, . . . , Q− 1, (3.5)

π(i+1)B3 + π(i)A3 + π(i−Q)C0 = 0, i = Q, (3.6)

π(i+1)B3 + π(i)A3 + π(i−Q)C1 = 0, i = Q+ 1, (3.7)

π(i+1)B3 + π(i)A3 + π(i−Q)C2 = 0, i = Q+ 2, Q+ 3 . . . , S − 1, (3.8)

π(i)A3 + π(i−Q)C2 = 0, i = S. (3.9)

Solving the above system of equations (except 3.6) recursively and using the normalizing

condition, we get the stated result. ���

4. System Performance Measures

In this section, we calculate some system performance measures useful in qualitative

interpretation of the model under study. We shall use the term π(i,k,ℓ) to represent the

steady state probability vector when the inventory level is i, the number of customers in

the system is k and the server status is j and with all other phases.

4.1. Expected inventory level

Let ζI denote the expected inventory level in the steady state. The expected inven-

tory level is given by

ζI =
S
∑

i=1

iπ(i)e. (4.1)
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4.2. Expected number of customers in the system

Let ζP denote the expected number of customers in the system. Since π(i,k) is a

vector of probabilities with the inventory level is i and k customers in the system, the

expected number of customers in the system ζP in the steady state is given by

ζP =
S
∑

i=0

N
∑

k=1

kπ(i,k)e. (4.2)

4.3. Expected reorder level

Let ζR denote the expected reorder level in the steady-state. A reorder is placed

when the inventory level drops from s+1 to s. It may occur when the inventory level is

s+ 1 and the server completes a service for a customer. Hence, we get

ζR = U0π(s+1,1,1)e+

N
∑

k=2

U0βπ(s+1,k,1)e

+V 0π(s+1,1,2)e+

N
∑

k=2

V 0δπ(s+1,k,2)

+

N
∑

i=2

(U0β + V 0δ)π(s+1,k,3)e. (4.3)

4.4. Expected waiting time of customer

Let E(W ) denote the mean waiting time of the customer. Then by little’s formula

E(W ) =
ζP
α

(4.4)

4.5. Total expected cost

Let TC(s, S) denote the long-run expected cost rate under the following cost struc-

ture:

cs : Set up cost per order.

ch : The inventory carrying cost per unit item per unit time.

co : Waiting cost of a customer in the system per unit time.

Then

TC(s, S) = chζI + csζR + coζP .

Since the computation of the π’s involve recursive equations, it is difficult to study

the qualitative behaviour of the total expected cost rate analytically. However, we present
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the following numerical analysis to demonstrate the computability of the results derived

in our work.

5. Numerical Analysis

In this section, we have used ‘simple’ numerical search procedures to find the “local”

optimal values by considering a small set of integer values for the decision variables.

For service time distribution of each of the servers, we consider the following three

PH distributions.

1. Exponential (EXP )

D0 = (−1) D1 = (1)

2. Erlang (ERL)

D0 =









−1 1 0 0

0 −1 1 0

0 0 −1 1

0 0 1 −1









D1 =









0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0









3. Hyper-exponential (HEX)

D0 =

(

−10 0

0 −1

)

D1 =

(

9 1

0.9 0.1

)

These three phase type distributions will be normalized so as to have a specific

service rates µ1 and µ2. These processes are special cases of renewal processes and the

correlation between service times is zero.

A three dimensional plot of TC(s, S) for Erlang service for both servers is presented

in Figure 1 which shows the convex nature of the cost function. We note that all the

tables in this chapter, upper entries in each cell give the optimal values S∗ and s∗ and

the lower entry gives the corresponding optimal cost rate. We also note that, in all the

table we interpret EXP − i as exponential service time distribution for server i, i = 1, 2.

That is, first three letter denotes the distributions (EXP,ERL and HEX) and the −i

denotes the server.

Example 1. In Table 1, we provide the optimum values, S∗ and s∗, that minimizes the

expected total cost rate for each of the three PHs of two heterogeneous service times

(PH1 for server 1, PH2 for server 2). The effect of variations in the holding cost ch, set

up cost cs and waiting cost of a customer co on the optimal values are tabulated. We

fix the system parameter values as θ = 0.9, γ1 = 0.25, γ2 = 1.5, α = 0.2, µ1 = 0.667,

µ2 = 0.444, N = 20. The key observations are listed below:
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α = 0.2; θ = 0.9;µ1 = 1.5;µ2 = 2.25; γ1 = 0.25; γ2 = 1.5;N = 20

ch = 0.003; cs = 1.7; co = 0.4;;

Figure 1: A three dimensional plot for convexity of total expected cost rate

• As is to be expected S is a non decreasing function of cs and co. This is because,

if the replenishment cost increases, the manager has to maintain high inventory so

as to avoid frequent ordering. If the waiting time increases, one has to maintain a

large inventory to reduce the number of waiting customers in the system.

• Similarly S is a non increasing function of ch. This is to be expected, since the

holding cost increases, the managers have to maintain low stock.

• We also note that s is a non increasing function of ch, cs and non decreasing function

of co

Example 2. In this example we analyse the sensitivity of the parameters for fixing

the cost values by the tables 2 - 7. For all the models, we fix the costs as follows.

ch = 0.003; cs = 1.7; co = 0.4. The key observations are listed below:

• If α increases, then the optimal inventory level and the optimal reorder level also

increase monotonically. Due to this increasing of inventory level and reorder level,

holding cost affects the total cost. So that the total cost value increases when α

increases. Similar behaviour is observed for θ also.

• The total cost increases as γ1 and γ2 increase.

• If the service rate for server 1 (µ1) increases, then s, S and TC decrease. But the

service rate for server 2 increases, only the total cost decreases. It does not affect

the inventory level because we give the higher service rate for server 1. The reason

will be provided in the next example.
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Table 1: Effect of costs on the optimal values

ch cs co PH Services

EXP − 1 ERL − 1 HEX − 1

EXP − 2 ERL − 2 HEX − 2 EXP − 2 ERL − 2 HEX − 2 EXP − 2 ERL − 2 HEX − 2

0.0025

1.65

0.35
45 5 45 5 45 5 45 5 45 5 45 5 45 5 46 6 45 5

0.117585 0.113504 0.116647 0.113162 0.112427 0.114762 0.119007 0.116023 0.122704

0.4
45 5 45 5 46 6 45 5 45 5 46 6 46 6 46 6 46 6

0.11882 0.114156 0.1175 0.113763 0.112923 0.115327 0.120126 0.11668 0.124601

0.45
45 6 45 6 46 6 45 6 45 5 46 6 46 6 46 6 46 6

0.119794 0.114545 0.118258 0.114227 0.113418 0.115812 0.121215 0.117337 0.126254

1.7

0.35
45 5 45 5 46 5 45 5 45 5 46 5 46 5 46 6 46 5

0.118964 0.114885 0.118001 0.114543 0.11381 0.11612 0.120353 0.117403 0.124055

0.4
46 5 46 5 46 6 46 5 45 5 46 6 46 6 46 6 46 6

0.120185 0.115525 0.118881 0.11514 0.114306 0.11671 0.121505 0.11806 0.125978

0.45
46 6 46 6 46 6 46 6 45 5 46 6 47 6 47 6 47 6

0.121179 0.115935 0.11964 0.115624 0.114801 0.117195 0.12259 0.118709 0.127628

1.75

0.35
46 5 46 5 46 5 46 5 46 5 46 5 46 5 47 6 46 5

0.120311 0.116236 0.119344 0.115901 0.115185 0.117466 0.121694 0.118769 0.125394

0.4
46 5 46 5 47 6 46 5 46 5 47 6 47 6 47 6 47 6

0.121531 0.116872 0.120244 0.116488 0.115668 0.118079 0.12286 0.119412 0.127333

0.45
47 6 47 6 47 6 46 6 46 5 47 6 47 6 47 6 47 6

0.122557 0.117318 0.120989 0.117009 0.116151 0.118553 0.123936 0.120055 0.128972

0.003

1.65

0.35
41 5 41 5 42 5 41 5 41 5 42 5 42 5 42 5 42 5

0.129796 0.125699 0.128961 0.125324 0.124514 0.127056 0.131351 0.128507 0.13503

0.4
42 5 42 5 42 5 42 5 41 5 42 6 42 6 42 6 42 5

0.131093 0.126413 0.130133 0.125991 0.125064 0.127938 0.1328 0.129366 0.137077

0.45
42 6 42 6 42 6 42 5 41 5 42 6 43 6 43 6 42 6

0.132362 0.127096 0.130953 0.126641 0.125615 0.128474 0.13395 0.13008 0.138985

1.7

0.35
42 5 42 5 42 5 42 5 42 5 42 5 42 5 42 5 42 5

0.131293 0.127201 0.130448 0.126834 0.126044 0.128546 0.132835 0.129992 0.136512

0.4
42 5 42 5 43 5 42 5 42 5 43 5 43 6 43 6 43 5

0.132583 0.127905 0.131613 0.127484 0.126579 0.129441 0.134306 0.130869 0.138555

0.45
42 5 42 5 43 6 42 5 42 5 43 5 43 6 43 6 43 6

0.133873 0.128609 0.132453 0.128134 0.127115 0.129982 0.13544 0.131571 0.140475

1.75

0.35
42 5 42 5 43 5 42 5 42 5 43 5 43 5 43 5 43 5

0.132783 0.128692 0.131914 0.128326 0.127538 0.130017 0.134293 0.131443 0.137976

0.4
43 5 43 5 43 5 43 5 42 5 43 5 43 5 43 6 43 5

0.134062 0.129388 0.133062 0.128976 0.128074 0.130892 0.135784 0.13236 0.139998

0.45
43 5 43 5 43 6 43 5 42 5 43 6 43 6 44 6 43 6

0.135333 0.130073 0.133946 0.129609 0.128609 0.131477 0.13693 0.133058 0.141963

0.0035

1.65

0.35
39 5 39 5 39 5 39 5 38 5 39 5 39 5 39 5 39 5

0.141225 0.137117 0.14049 0.136721 0.135851 0.138566 0.14291 0.14009 0.146568

0.4
39 5 39 5 39 5 39 5 39 5 39 5 39 5 40 6 39 5

0.142578 0.137882 0.141743 0.137428 0.136446 0.139541 0.144512 0.141277 0.148697

0.45
39 5 39 5 40 6 39 5 39 5 40 6 40 6 40 6 40 5

0.143932 0.138647 0.142867 0.138135 0.137029 0.140365 0.145891 0.142032 0.150822

1.7

0.35
39 5 39 5 39 5 39 5 39 5 40 5 40 5 40 5 39 5

0.142845 0.138739 0.142108 0.138344 0.13749 0.140187 0.144521 0.141692 0.148179

0.4
39 5 39 5 40 5 39 5 39 5 40 6 40 5 40 5 40 5

0.144199 0.139504 0.143333 0.139051 0.138072 0.141138 0.146093 0.142858 0.150286

0.45
40 5 40 5 40 6 39 5 39 5 40 6 40 6 40 6 40 5

0.145543 0.140264 0.144491 0.139758 0.138655 0.141992 0.147511 0.143654 0.152387

1.75

0.35
40 5 40 5 40 5 39 5 39 5 40 6 40 5 40 5 40 5

0.144455 0.140353 0.143681 0.139967 0.139115 0.141765 0.146088 0.143261 0.149751

0.4
40 5 40 5 40 5 40 5 39 5 40 5 40 5 40 5 40 5

0.145786 0.141097 0.144905 0.140654 0.139698 0.142713 0.14766 0.144427 0.151851

0.45
40 5 40 5 41 6 40 5 40 5 41 6 41 6 41 6 40 5

0.147117 0.14184 0.146103 0.141341 0.140266 0.143613 0.149113 0.145251 0.153952
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Table 2: Effect of arrival rate on optimal values

γ1 = 0.25; γ2 = 1.5; θ = 0.9;µ1 = 0.667;µ2 = 0.444

α

PH Services

EXP − 1 ERL − 1 HEX − 1

EXP − 2 ERL − 2 HEX − 2 EXP − 2 ERL − 2 HEX − 2 EXP − 2 ERL − 2 HEX − 2

0.15
40 4 42 5 42 5 41 4 42 5 40 4 42 5 42 5 42 5
0.181595 0.128161 0.15291 0.16783 0.138913 0.179879 0.127318 0.126065 0.132395

0.2
42 5 42 5 43 5 43 6 43 6 43 5 42 5 42 5 43 5
0.132583 0.127905 0.131613 0.134306 0.130869 0.138555 0.127484 0.126579 0.129441

0.25
42 5 42 5 43 5 43 6 43 6 43 6 42 5 42 5 43 6
0.12397 0.128371 0.130361 0.131268 0.130778 0.132768 0.127921 0.126916 0.19725

Table 3: Influence of vacation rate of the second server on the optimal values
γ1 = 0.25; θ = 0.9;α = 0.2;µ1 = 0.667;µ2 = 0.444

γ2

PH Services

EXP − 1 ERL − 1 HEX − 1

EXP − 2 ERL − 2 HEX − 2 EXP − 2 ERL − 2 HEX − 2 EXP − 2 ERL− 2 HEX − 2

1.4
42 5 42 5 43 5 43 6 43 6 43 5 42 5 42 5 43 5
0.132582 0.127904 0.131612 0.134305 0.130868 0.138545 0.127484 0.126579 0.129440

1.5
42 5 42 5 43 5 43 6 43 6 43 5 42 5 42 5 43 5
0.132583 0.137905 0.131613 0.134306 0.130869 0.138555 0.127484 0.126579 0.129441

1.6
42 5 42 5 43 5 43 6 43 6 43 5 42 5 42 5 43 5
0.132584 0.127905 0.131615 0.134307 0.130870 0.138565 0.127484 0.126579 0.129441

Table 4: Sensitivity of γ1 on the optimal values
γ2 = 1.5; θ = 0.9α = 0.2;µ1 = 0.667;µ2 = 0.444

γ1

PH Services

EXP − 1 ERL − 1 HEX − 1

EXP − 2 ERL − 2 HEX − 2 EXP − 2 ERL − 2 HEX − 2 EXP − 2 ERL − 2 HEX − 2

0.24
42 5 42 5 43 5 43 6 43 6 43 5 42 5 42 5 43 5
0.132575 0.1279 0.131607 0.134297 0.130863 0.138528 0.12748 0.126576 0.129436

0.25
42 5 42 5 43 5 43 6 43 6 43 5 42 5 42 5 43 5
0.132583 0.127905 0.131613 0.134306 0.130869 0.138555 0.127484 0.126579 0.129441

0.26
42 5 42 5 43 5 43 6 43 6 43 5 42 5 42 5 43 5
0.132591 0.127909 0.13162 0.134315 0.130875 0.138581 0.127487 0.126582 0.129445

Table 5: Influence of the replenishment rate on the optimal values
γ1 = 0.25; γ2 = 1.5;α = 0.2;µ1 = 0.667;µ2 = 0.444

θ

PH Services

EXP − 1 ERL − 1 HEX − 1

EXP − 2 ERL − 2 HEX − 2 EXP − 2 ERL − 2 HEX − 2 EXP − 2 ERL − 2 HEX − 2

0.85
43 6 43 6 43 6 43 6 43 6 43 6 43 6 42 5 43 6
0.13355 0.128866 0.132437 0.135167 0.1318 0.139633 0.128511 0.127573 0.130231

0.9
42 5 42 5 43 5 43 6 43 6 43 5 42 5 42 5 43 5
0.132583 0.127905 0.131613 0.134306 0.130869 0.138555 0.127484 0.126579 0.129441

0.95
42 5 42 5 42 5 42 5 42 5 42 5 42 5 41 5 42 5
0.131728 0.127039 0.130617 0.133277 0.129931 0.137526 0.126679 0.125848 0.128428

Example 3. In this example, we explain the effect of service rates on the system per-

formance measures through figure (2). We interpret the figure as follows. The values on

the x axis represent service rate of server 1, if µ1 > µ2, and values of the service rate
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Table 6: Effect of second server service rate on the optimal values
γ1 = 0.25; γ2 = 1.5; θ = 0.9;α = 0.2;µ1 = 0.667;

µ2

PH Services

EXP − 1 ERL − 1 HEX − 1

EXP − 2 ERL − 2 HEX − 2 EXP − 2 ERL − 2 HEX − 2 EXP − 2 ERL − 2 HEX − 2

0.442
42 5 42 5 43 5 43 6 43 6 43 5 42 5 42 5 43 5
0.132391 0.127785 0.131448 0.134146 0.130750 0.138332 0.127362 0.126462 0.129308

0.444
42 5 42 5 43 5 43 6 43 6 43 5 42 5 42 5 43 5
0.132583 0.127905 0.131613 0.134306 0.130869 0.138555 0.127484 0.126579 0.129441

0.446
42 5 42 5 43 5 43 6 43 6 43 5 42 5 42 5 43 5
0.132778 0.128026 0.131782 0.134468 0.130989 0.138782 0.127607 0.126698 0.129575

Table 7: Sensitivity of µ1 on the optimal values
γ1 = 0.25; γ2 = 1.5; θ = 0.9;α = 0.2;µ2 = 0.444;

µ1

PH Services

EXP − 1 ERL − 1 HEX − 1

EXP − 2 ERL − 2 HEX − 2 EXP − 2 ERL − 2 HEX − 2 EXP − 2 ERL − 2 HEX − 2

0.645
42 5 42 5 42 5 42 5 42 6 42 5 42 5 41 5 42 5
0.130627 0.126643 0.130111 0.132339 0.129499 0.136279 0.126273 0.125352 0.128197

0.667
42 5 42 5 43 5 43 6 43 6 43 5 42 5 42 5 43 5
0.132583 0.127905 0.131613 0.134306 0.130869 0.138555 0.127484 0.126579 0.129441

0.689
43 5 43 5 43 6 43 6 43 6 43 5 42 5 42 5 43 6
0.134808 0.129258 0.133215 0.136501 0.132371 0.141083 0.128786 0.127887 0.130688

of server 2, if µ1 < µ2. Similarly, the values on the y axis represent the service rate of

server 2 if µ1 < µ2, and values of the service rate of server 2, if µ1 > µ2. From figure (2)

we observe the following:

• If µ1 and µ2 increases then the expected inventory level decreases for both cases

(µ1 < µ2 and µ1 > µ2).

• If µ1 and µ2 increases then the expected number of customers in the system, the

expected reorder level and the expected waiting time of customer increase for both

cases (µ1 < µ2 and µ1 > µ2).

Example 4. We evaluate the impact of the service time of both servers on expected

waiting time. The corresponding graphs are depicted in figure (3). Here, we assume that

the service time distribution for server 1 is fixed and vary the service time distribution

for server 2. Other parameters are fixed as α = 0.2; θ = 0.9; γ1 = 0.25; γ2 = 1.5;N = 20;

When the service time for server 1 follows exponential distribution, we observe the

following:

• E(W ) is low when the service time for server 2 follows Erlang distribution and it

is high when the service time for server 2 follows exponential distribution.

• When the service time for server 2 follows either of the three distributions, i.e.,

exponential, Erlang and hyper-exponential, the E(W ) is decreasing as the reorder

level s is increasing.
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α = 0.2; θ = 0.9; γ1 = 0.25; γ2 = 1.5;N = 20

ch = 0.003; cs = 1.7; co = 0.4;;

Figure 2: Effect of service rates for both servers on the system performance measures

• When the service time for server 2 follows either of the three distributions, i.e.,

exponential, Erlang and hyper-exponential, theE(W ) is decreasing as the maximum

inventory level is increasing.

When the service time for server 1 follows Erlang distribution, we observe the following:

• E(W ) is low when the service time for server 2 follows Erlang distribution and it

is high when the service time for server 2 follows hyper-exponential distribution.

• When the service time for server 2 follows exponential distribution, the E(W ) is

decreasing as the reorder level s is increasing.

• When the service time for server 2 follows Erlang distribution, the E(W ) is increas-

ing at a higher rate as the reorder level s is increasing.

And when the service time for server 1 follows hyper-exponential distribution, the

E(W ) behaves as in the case of Erlang distribution.

6. Conclusion

In this paper, we have analyzed a finite source inventory system with two hetero-

geneous servers who avail multiple vacations. The demands are generated by a finite

number of homogeneous sources and the service times have phase type distributions for

each server. Lead times and vacation durations of each server are distributed exponen-

tially. The major contribution made in this paper is to allow vacation for each server
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α = 0.2; θ = 0.9;µ1 = 0.667;µ2 = 0.444; γ1 = 0.25; γ2 = 1.5;N = 20

ch = 0.003; cs = 1.7; co = 0.4;;

Figure 3: Effect of Expected waiting time on S and s for both servers

and also to allow multiple vacations. Unlike in the queueing theory context, the vacation

starts not only when the customer level becomes zero, but also when the inventory is

depleted. At the end of vacation, even if there is at least one customer in the system,

another vacation will start if there are no items in the stock. Since this model includes

these real time aspects it has a wider scope for application. The stability of this sys-

tem is analyzed by looking at the continuous-time Markov chain associated with this

process. The stationary distribution of the system state is obtained. A few measures

of performance are computed. Using numerical illustrations on some specified collection

of parameters, we have studied the sensitivity of various cost on the optimal values, the

sensitivity of the parameter for fixing the cost values, the effect of service rates on the

system performance measures and the impact of service time of both servers on expected

waiting time.
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Appendix A

[C0]kℓ =



















θ, ℓ = k, k = 0

E
(1)
0 , ℓ = k, k = 1

E
(2)
0 , ℓ = k, k = 2, 3, . . . , N

0, Otherwise

E
(1)
0 =

(

θ 0 0
)

E
(2)
0 =

(

θ 0 0 0
)

[C1]kℓ =



















θ, ℓ = k, k = 0

E
(3)
0 , ℓ = k, k = 1

E
(4)
0 , ℓ = k, k = 2, 3, . . . , N

0, Otherwise

E
(3)
0 =





θ 0 0

0 θIm 0

0 0 θIn





E
(4)
0 =





θ 0 0 0

0 θIm 0 0

0 0 θIn 0





[C2]kℓ =



















θ, ℓ = k, k = 0

E
(3)
0 , ℓ = k, k = 1

E
(5)
0 , ℓ = k, k = 2, 3, . . . , N

0, Otherwise

E
(5)
0 =









θ 0 0 0

0 θIm 0 0

0 0 θIn 0

0 0 0 θ(Im ⊗ In)









[B1]kℓ =

{

E
(1)
1 , ℓ = k − 1, k = 1, 2, . . . , N

0, Otherwise

E
(1)
1 =





0

U0

V 0




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[B2]kℓ =











E
(1)
1 , ℓ = k − 1, k = 1

E
(2)
1 , ℓ = k − 1, k = 2, 3, . . . , N

0, Otherwise

E
(2)
1 =









0 0 0

0 U0β 0

0 0 V 0δ

0 Im ⊗ V 0 U0 ⊗ In









[B3]kℓ =



















E
(1)
1 , ℓ = k − 1, k = 1

E
(2)
1 , ℓ = k − 1, k = 2

E
(3)
1 , ℓ = k − 1, k = 3, 4, . . . , N

0, Otherwise

E
(3)
1 =









0 0 0 0

0 U0β 0 0

0 0 V 0δ 0

0 0 0 (U0β ⊕ V 0δ)









[A0]kℓ =







(N − k)α, ℓ = k + 1, k = 0, 1, . . . , N − 1

−((N − k)α+ θ), ℓ = k, k = 0, 1, . . . , N

0, Otherwise

[A1]kℓ =



























F
(1)
1 , ℓ = k + 1, k = 0

F
(k+1)
1 , ℓ = k + 1, k = 1, 2 . . . , N − 1

−(Nα+ θ), ℓ = k, k = 0

E
(k)
2 , ℓ = k, k = 1, 2 . . . , N

0, Otherwise

F
(1)
1 =

(

Nα 0 0
)

F
(k+1)
1 =





(N − k)α 0 0

0 (N − k)αIm 0

0 0 (N − k)αIn





E
(k)
2 =





−((N−k)α+θ+γ1+γ2) γ1β γ2δ

0 U−((N−k)α+θ)Im 0

0 0 V −((N−k)α+θ)In




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[A2]kℓ =















































F
(2)
1 , ℓ = k + 1, k = 0

F
(1)
2 , ℓ = k + 1, k = 1

F
(k)
2 , ℓ = k + 1, k = 2, 3 . . . , N − 1

−(Nα+ θ), ℓ = k, k = 0

E
(1)
2 , ℓ = 1, k = 1

E
(k−1)
3 , ℓ = k, k = 2, 3 . . . , N

0, Otherwise

F
(1)
2 =





(N − k)α 0 0 0

0 (N − k)αIm 0 0

0 0 (N − k)αIn 0





F
(k)
2 =









(N − k)α 0 0 0

0 (N − k)αIm 0 0

0 0 (N − k)αIn 0

0 0 0 (N − k)α(Im ⊗ In)









E
(k−1)
3 =







−((N−k)α+θ+γ1+γ2) γ1β γ2δ 0

0 U−((N−k)α+θ+γ2)Im 0 γ2δ
0 0 V −((N−k)α+θ+γ1)In γ1β
0 0 0 (U⊕V )−((N−k)α+θ)(Im⊗In)







A3 = A2 + θI

Table 8: The sub matrices and their dimensions

Matrices Dimensions
A0 (N + 1)× (N + 1)
A1 (N + 1 +Nm+Nn)× (N + 1 +Nm+Nn)
A2, A3, B3, C2 (N + 1 +Nm+Nn+ (N − 1)mn)× (N + 1 +Nm+Nn+ (N − 1)mn)
B1 (N + 1 +Nm+Nn)× (N + 1)
B2 (N + 1 +Nm+Nn+ (N − 1)mn)× (N + 1 +Nm+Nn)
C0 (N + 1)× (N + 1+Nm+Nn+ (N − 1)mn)
C1 (N + 1 +Nm+Nn)× (N + 1 +Nm+Nn+ (N − 1)mn)
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