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Abstract

Reference price effects, as an important factor affecting customers’ purchase decision for

a certain commodity, has an significant impact on the firms’ pricing and inventory strategies.

Therefore, how to determine an appropriate sales pricing and order flexibility strategy to

maximize firms’ profit is an essential task. A single-item, periodic-review finite horizon joint

pricing and inventory system with regular and expedited supply sources under reference price

effects is investigated, where demand in consecutive periods are independent as well as price

and reference price sensitive random variables. The optimal pricing and ordering strategies,

and the impact of reference price effects on these optimal decisions are studied. These results

generalize those in Zhou and Chao (2014) in Production and Operations Management, Vol.

23, 65-80 to the reference price effects. Moreover, the operational impact of adding reference

price effects is analyzed by comparing with their model. Finally, Numerical experiments

characterize the qualitative properties of the optimal strategies and corresponding optimal

profit values under reference price effects.

Keywords: Dynamic programming, pricing and inventory, supply flexibility, lead time,

reference price effects.

1. Introduction

Reference price was first derived from the adaptation level (see Helson and Bevan

[17]). Later, prospects theory (see Kahneman and Tversky [22]) and behavioral sciences

(see Kalyanaram and Winer [23]) systematically elaborated on the reference price, and

they indicated that customers will remember past prices with repeated transactions and

develop price expectations for commodities. This expectation, captured by the reference

price, acts as a benchmark against which customers compare the price of a commodity.

If the current sales price is lower (higher) than the reference price, customers see it

as a gain (loss), and hence are more likely (less inclined) to make the purchase. This

phenomenon is usually called the reference price effects. Customers are called loss averse

(loss neutral) if their demand is more (as) responsive to customers’ perceived losses than

(as) their perceived gains. Otherwise, they are called loss/gain seeking. Firms in many
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industries, such as electronic, clothing and other tidal commodities, will fully consider

this effects when making pricing strategies (see Mathies and Gudergan [26]). In practice,

pricing strategy is inseparable from the consideration of inventory control decisions.

Therefore, in making decisions, many firms not only consider the impact of reference

price effects on pricing strategies, but also the inventory strategies simultaneously, such

as Amazon, Dell and Wal-Mart (see Byrnes [2] and Feng [7]). In addition, due to the

existence of customers’ reference price, the flexibility of the firms’ ordering strategy

becomes particularly important in respond to customers’ demand. Many suppliers will

also provide expediting replenishment opportunities to firms. For example, the eHub

system launched by Cisco in 2001 (see Grosvenor and Austin [14]). It is a trading e-

marketplace that provides a platform for the planning and executing tasks across the

firm’s extended manufacturing supply chain. By eHub, Cisco connects with its suppliers

to build up a flexible/agile supply channel, where Cisco is allowed to return the excess

stock and to place expediting orders. In this way, Cisco can reduce the waste in inventory

and increase the speed to response to customers’ needs. From academic and practical

perspectives, it is interesting and necessary to investigate the joint pricing and inventory

management with supply flexibility under reference price effects.

This paper considers a coordination pricing and inventory management with regular

and expedited supplies under reference price effects. The purpose of this paper is to

understand how reference price effects impacts the optimal dynamic pricing and inventory

replenishment policies for each supply in each period so that the total expected discounted

profit is maximized. The related literature with our work for coordination pricing and

inventory control involves two streams: reference price effects and supply flexibility. We

review the related areas below.

The first stream of research considers the reference price effects while absence of

supply flexibility. Researches on reference price effects mainly focus on pricing strategy.

This aspect of research began in the 1990s. Krishnamurthi et al. [21] study the impact

of reference price effects on brand selection and purchase quantity, and point out that

customers have the characteristics of brand loyalty under symmetrical reference prices.

Greenleaf [13] analyzes the firm’s pricing strategy with reference price effects and explains

how the reference price effects impacts the promotion decision of a firm during one sales

period. The author shows that the firm can increase its profit by considering the reference

price effects. Some recent works explore how pricing strategies should account for the

reference price effects. See Kopalle et al. [20], Fibich et al. [8, 9], Popescu and Wu [28],

Nasiry and Popescu [27], Chen et al. [4], Hu et al. [19] and the references therein. Arslan

and Kachani [1] and Mazumdar et al. [25] provide reviews of dynamic pricing model

with reference price effects. However, to our best knowledge, only a few papers have

integrated the reference price effects into the pricing and inventory control model. This

line of research started with Gimpl-Heersink [11], who proved the optimality of the base-

stock-list-price for the single-period and two-period models when the customers are loss

neutral. However, the optimality of the base-stock-list-price is more stricter for the multi-

period setting. Urban [35] analyzes a single-period joint pricing and inventory model with

symmetric and asymmetric reference price effects and shows that the consideration of
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the reference price has a substantial impact on the firm’s profitability. Zhang [37] uses

a class of transformation techniques to prove the optimality of the base-stock-list-price

policy, even if the single-period profit function is nonconcave. Taudes and Rudloff [33]

provide an application of the two-period model from Gimpl-Heersink [11] to electronic

commodities. Güler et al. [15] extend the model of Gimpl-Heersink [11] to more general

concave demand functions, they deal with the non-concavity of revenue function by

applying the transformation technique proposed by Zhang [37] and the inverse demand

function. The optimality of the state-dependent order-up-to strategy is proved for the

transformed concave revenue function model. Güler et al. [16] use the safety stock

as a decision variable to characterize the steady state solution to the problem when

the planning horizon is infinite. Chen et al. [5] introduce a new concave transform

technique to ensure that the profit function is concave by using the preservation property

of supermodularity in parameter optimization problems with the nonlattice structure

proposed by Chen et al. [3], and then prove the optimality of the base-stock-list-price

strategy. Other related work on this stream of research, interested readers may refer to

the review by Ren and Huang [30].

The second stream of research considers the supply flexibility while absence of refer-

ence price effects. The earliest studies on this aspect can be traced back to the late 1980s

and early 1990s. Henig et al. [18] consider a minimum ordering quantity contract under

which the firm decides whether to order the prefixed contract amount or order more than

this amount at the beginning of each period, but an incremental cost will be charged

for the excess amount ordered. Tsay and Lovejoy [34] extend the replenishment decision

problems to a three-stage setting where a heuristic approach is used to transform the

original stochastic problem into a deterministic problem that can be solved more easily.

Sethi et al. [31] study the impact of forecast quality and the flexibility level by quantity

flexibility contract on the ordering decisions. Feinberg and Lewis [6] study a broader

problem, where in addition to increasing inventory or disposing of it, the manager can

borrow or store some inventory for one period. They show that the four-threshold policy

is optimal for each period. Fu et al. [10] analyze the effect of regular and expediting

replenishment with varying supply lead times from the inventory cost minimization. Zhu

[39] studies the pricing and inventory strategy with returns and expediting, and shows

that the optimal inventory adjustment policy follows a dual-threshold policy. Zhou and

Chao [38] consider a periodic review inventory system with regular and expedited sup-

ply modes with lead time 1 and 0, respectively. They show that the optimal inventory

policy is determined by two state-independent thresholds, one for each supply mode,

and the optimal price follows a list-price policy. Gong et al. [12] develop a joint pricing

and inventory control problem which contains a quick-response supplier with lead time

0 and a regular supplier with lead time 1 that both suffer disruption risks. Roni et al.

[29] analyze a stochastic inventory model based on a hybrid inventory policy with both

regular and emergency orders responding to regular and surge demands. Li et al. [24]

study a quantity flexibility contract that the retailer commits an amount of quantity

of newly-developed commodities, and in return the manufacturer allows the retailer to

adjust the order quantities of the commitment quantities based on the inventory balance
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status and the likely customer demand. A more complete literature review of this line

of research is provided in recent paper by Yao and Minner [36].

This study differs from the aforementioned two streams of research in two aspects.

First, our model integrates pricing and inventory decision with supply flexibility, i.e., we

consider two supply sources, one is expedited supply from a supplier with lead time 0,

one is regular supply from the other supplier that has lead time 1. The expedited supply

incurs a higher unit cost than the regular supply. Second, we consider the customers’

reference price effects. Specifically, we study a single-item, periodic-review joint pricing

and inventory system with regular and expedited supply sources under reference price

effects. Demand in consecutive periods are independent as well as price and reference

price sensitive random variables. Unfilled demands are fully backlogged. To the best

of our knowledge, the present work is the first attempt to analyze the joint pricing and

inventory control problem with two supply modes under reference price effects.

Our research extends the model of Zhou and Chao [38] (ZC model for short) to the

reference price effects. The guarantee of the profit-to-go function’s concavity and super-

modularity, which is a critical technical problem, allows us to analyze the optimal pricing

and inventory strategies as well as the influence of reference price effects on optimal de-

cisions. The contributions of this paper are as follows. First, this paper establishes the

optimal strategies for joint pricing and inventory control problem with two supply modes

under reference price effects, the structure of the optimal policies is similar to ZC model,

but all the optimal policy parameters are reference-price-dependent. More concretely, if

both two supply modes are adopted, the optimal inventory replenishment policy follows

a state-independent but reference-price-dependent base-stock type with two thresholds

(SE
t (r), s

R
t (r)), one for each supply modes, i.e., first raise the inventory level to SE

t (r) us-

ing the expedited order, and then raise the inventory position to SR
t (r) using the regular

order, and to set the price at a reference-price-dependent list-price. If only the regular

supply is adopted, then the optimal policy follows a state-and-reference-price-dependent

base-stock policy, with the base-stock level increasing in the initial inventory level. The

optimal price is state-and-reference-price-dependent and markdowns with the initial in-

ventory level. Second, the impacts of reference price effects on regular and expedited

order as well as pricing decisions are researched. Moreover, the operational impact of

adding reference price effects is studied by comparing with ZC model.

The rest of this paper is organized as follows. The finite period model with stochastic

dynamic programming is presented in Section 2, and the optimal policies are character-

ized in Section 3. Section 4 investigates the operational impacts from the perspective of

adding reference price effects. Numerical results are represented in Section 5. Section 6

concludes our paper.

2. Model Description

Consider a single-item, periodic-review problem for a firm in a finite planning horizon

with consecutive T (1 ≤ T ≤ ∞) periods. The demand in period t, denoted by Dt, is
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non-negative and independent random variables. Similar to Güler et al. [16], the demand

Dt(1 ≤ T ≤ ∞) is given by

Dt(pt, rt, εt) = dt(pt, rt) + εt,

where dt(pt, rt) is the mean demand function who is a deterministic function of the unit

selling price pt and the reference price rt in period t. Dt(pt, rt, εt) is non-negative and

follows a continuous probability distribution, εt is a random variable with zero mean and

independent of pt and rt. This demand function is very general and includes the additive

and multiplicative models as special cases.

The mean demand is dt(pt, rt) = µt(pt) + Rt(rt − pt, rt), where µt(pt) = dt(pt, pt)

is called the base demand and Rt(rt − pt, rt) = η+max{rt − pt, 0} + η−min{rt − pt, 0}

is called the reference price effects on demand (see Helson and Bevan [17]). The non-

negative parameters η+ and η− measure the sensitivities of demand associated with the

perceived gain and loss, respectively. Demand is classified as loss averse, loss neutral,

or loss/gain seeking, depending on whether η+ ≤ η−, η+ = η−, or η+ ≥ η−. For more

information about Rt(rt − pt, rt), we refer to Güler et al. [15, 16] and the references

therein.

We assume that the price in each period, pt is restricted to a bounded interval [p, p].

The reference price depends on past prices and the current price. A commonly used

model for the evolution of reference price is the exponential smoothing model (Chen et

al. [4, 5], Gimpl-Heersink [11], Güler et al. [15, 16]):

rt+1 = αrt + (1− α)pt,

where α(0 ≤ α < 1) is the memory factor. The larger the memory factor, the longer the

memory. If α is high, then customers have a long memory and past price effect is larger.

If α is small, then current price has a greater effect than the past on the reference price.

The initial reference price is given by r1 ∈ [p, p], and thus all rt belong to the interval.

Moreover, we introduce the following structure on the mean demand.

Assumption 1. The mean demand dt(pt, rt) is concave, bounded, non-negative and

continuous, strictly decreasing in pt and increasing in rt for t = 1, 2, . . . , T .

It is worth mentioning that the existence of the mean demand functions satisfy

Assumption 1 is proved in Güler et al. [15, 16] when customers are loss neutral or loss

averse and some examples are presented. Hence, this paper assumes that the customers

are loss neutral or loss averse. In addition, Assumption 1 implies that pt(dt, rt) is concave

in (dt, rt) (Proposition 1, Güler et al. [16]), where pt(dt, rt) is the inverse function of

the mean demand dt(pt, rt) for a given rt. Moreover, pt(dt, rt) is strictly decreasing in

dt and increasing in rt for t = 1, 2, . . . , T (Proposition 1, Güler et al. [16]). Hence,

determining the price is equivalent to determining the mean demand. In the discussion

below, without other specification, we will focus on finding the optimal mean demand dt
for period t. Therefore, we assume that the feasible range of the mean demand in period

t is dt ∈ [dt, dt], where dt ≥ 0 and dt < +∞.
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Similar to Zhou and Chao [38], the sequence of events is as follows. First, the firm

receives the regular order placed in the previous period and updates and reviews the

current inventory level. Second, the expedited order is placed, if any, and then received.

Third, a regular order is placed and the selling price is set. Fourth, demand is realized

and excess demand is backlogged. Finally, all costs and revenue are incurred.

We summarize the notations that will be used in this paper.

xt = the initial inventory level before any decisions are made in period t,

yEt = the inventory level after placing the expedited order in period t,

yRt = the inventory position after placing the regular order in period t,

cEt = the unit ordering cost for the expedited order in period t,

cRt = the unit ordering cost for the regular order in period t,

γ = the discount factor, 0 ≤ γ < 1.

Here, cEt > cRt . Further, we assume that the price cannot be smaller than the

ordering cost, i.e., p ≥ cEt for every t. With the event sequence and the notations above,

the order quantity from the expedited supply is yEt −x while that from the regular supply

is yRt − yEt . In the rest of the article, for ease of exposition, we will omit the subscript t

unless confusion may arise.

At the end of each period after demand is realized, the remaining inventory is carried

over to the next period and incurs holding cost, while unsatisfied demand is backlogged

and incurs shortage cost. Let Ht(z) be the inventory holding/backlogging cost when the

ending inventory level is z in period t, then the expected holding/backlogged cost can

be written as:

Gt(y, d) = E[Ht(y − d− εt)],

where y is the initial inventory level after expedited ordering at period t. We assume

that Gt(y, d) is convex in y and d.

Given the initial inventory x and reference price r in each period t = 1, 2, . . . , T .

Then, this problem can be formulated as a dynamic programming and the Bellman

equation for this problem is:

vt(x, r) = max
yR≥yE≥x

dt≤d≤dt

{

d · p(d, r)− cEt y
E − cRt (y

R − yE)−Gt(y
E , d)

+γE[vt+1(y
R − d− εt, αr + (1− α)p(d, r))]

}

+ cEt x, (2.1)

where vt is the profit-to-go function and G(yE , d) = E[Ht(y
E − d − εt)], E denotes the

expectation operator. The terminal value is given by vT+1(x, r) = cET+1x.

To facilitate the analysis, let Vt(x, r) = vt(x, r) − cET+1x, and so VT+1(x, r) = 0.

Therefore, the Bellman equation (2.1) becomes

Vt(x, r) = max
yR≥yE≥x

dt≤d≤dt

Jt(y
E , yR, d, r), (2.2)
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where

Jt(y
E , yR, d, r) = d[p(d, r) − γcEt+1]− (cEt − cRt )y

E + (γcEt+1 − cRt )y
R −Gt(y

E , d)

+γE[Vt+1(y
R − d− εt, αr + (1− α)p(d, r))]. (2.3)

Furthermore, we make the following assumption.

Assumption 2. The inverse function pt(d, r) of the mean demand dt(p, r) is supermod-

ular in (d, r), and the revenue function d · pt(d, r) is joint concave in (d, r).

Under Assumption 2, the revenue function d · pt(p, r) is supermodular in (d, r) by

Theorem 6 in Güler et al. [16].

3. Optimal Operational Strategies and Its Analysis

In this section, we first characterize the optimal ordering for regular and expedited

along with pricing strategies, and then analyze the impact of reference price effects on

the optimal pricing and inventory strategies.

3.1. Optimal pricing and inventory strategies

This subsection characterizes the optimal ordering for regular and expedited along

with pricing strategies. We first need the concavity of Jt and Vt, which is shown in the

following lemma, and hence there exists a unique optimal decision in each period for a

given x and r. For the smoothness of the paper, all the proofs of main results in this

section are available in the Appendix.

Lemma 1. For t = 1, 2, . . . , T , we have

(i) Vt(x, r) is decreasing in x and increasing in r.

(ii) Jt(y
E , yR, d, r) is joint concave in (yE , yR, d, r).

(iii) Vt(x, r) is joint concave in (x, r).

For any yE and yR, define

dt(y
E , yR, r) = arg max

dt≤d≤dt

Jt(y
E , yR, d, r),

then the optimal price is given by

pt(y
E , yR, r) = pt(dt(y

E , yR, r), r). (3.1)

In addition, denote

(sEt (r), s
R
t (r)) = arg max

yR≥yE
Jt(y

E , yR, dt(y
E , yR, r), r), (3.2)

SR
t (x, r) = argmax

yR
Jt(x, y

R, dt(x, y
R, r), r). (3.3)

Let

pt(r) = pt(s
E
t (r), s

R
t (r), r) = pt(dt(s

E
t (r), s

R
t (r), r), r), (3.4)
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Pt(x, r) = pt(x, S
R
t (x, r), r) = pt(dt(x, S

R
t (x, r), r), r). (3.5)

It is obvious that sRt (r) = SR
t (s

E
t (r), r) and pt(r) = Pt(s

E
t (r), r). With these optimal

parameters, the optimal pricing and inventory strategies are analyzed below.

The following lemma illustrates the submodularity and supermodularity of Jt(y
E , yR,

d, r) in (yE , p) and (yE, yR), respectively.

Lemma 2. For t = 1, 2, . . . , T , we have

(i) Jt(y
E, yR, d, r) is submodular in (yE, p).

(ii) Jt(y
E, yR, d(yE , yR, r), r) is supermodular in (yE , yR).

According to Lemma 2 above and Theorem 2.2.8 in Simchi-Levi et al. [32], we can

obtain the following theorem which characterizes the monotonicity of the optimal pa-

rameters defined in Eqs. (3.1)−(3.5).

Theorem 1. For t = 1, 2, . . . , T , we have

(i) pt(y
E , yR, r) is decreasing in yE.

(ii) pt(y
E , yR, r) is decreasing in yR.

(iii) SR
t (x, r) is increasing in x and Pt(x, r) is decreasing in x.

On the basis of the analysis above, we can characterize the optimal inventory re-

plenishment and pricing policies for each period via the theorem below.

Theorem 2. For t = 1, 2, . . . , T , the optimal ordering and pricing policies are charac-

terized as follows

(i) If x ≤ sEt (r), then (yE
∗

t , yR
∗

t ) = (sEt (r), s
R
t (r)) and p∗t (r) = pt(r).

(ii) If sEt (r) < x < SR
t (x, r), then (yE

∗

t , yR
∗

t ) = (x, SR
t (x, r)) and p∗t (x, r) = Pt(x, r).

(iii) If x > SR
t (x, r), then (yE

∗

t , yR
∗

t ) = (x, x) and p∗t (x, r) = pt(x, x, r).

This theorem shows that, when initial inventory level x ≤ sEt (r), the optimal in-

ventory replenishment policy follows a state-independent but reference-price -dependent

base-stock type with two thresholds (sEt (r), s
R
t (r)), one for expedited order and the other

for regular order. Specifically, if the initial inventory level x at the beginning of period

t is less than sEt (r), it is optimal to order up to sEt (r) using the expedited order, then

use the regular order to raise the inventory position to sRt (r), and to set the price at

pt(r) which is a reference-price-dependent list-price. If the initial inventory level x is

greater than sEt (r), then only the regular order is used to bring the inventory position to

max{x, SR
t (x, r)} and set the price at pt(max{x, SR

t (x, r)}), which follows a state-and-

reference-price-dependent price and markdowns with the initial inventory level x.

To facilitate the characterization of optimal policy parameters, we let ỹE = yE − d,

ỹR = yR − d, then the optimal equation (2.1) becomes

vt(x, r) = max
yR≥yE≥x−d

dt≤d≤dt

{

[d · p(d, r)− cEt d]− (cEt − cRt )ỹ
E −Gt(ỹ

E − εt)− cRt ỹ
R
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+γE[vt+1(ỹ
R − εt, αr + (1− α)p(d, r))]

}

+ cEt x,

where Gt(ỹ
E − εt) = E[Ht(ỹ

E − εt)].

Similar to Zhou and Chao [38], the optimal policy parameters sEt (r), sEt (r) and

SR
t (x, r) are given by

sEt (r) = ỹ1t (r) + d̃t(r), sRt (r) = ỹ2t (r) + d̃t(r), and SR
t (x, r) = ỹ2t (r) + d̃t(x, r),

where ỹ2t (r) is the maximizer of

Φt(ỹ
R) = max

dt≤d≤dt

{−cRt ỹ
R + γE[vt+1(ỹ

R − εt, αr + (1− α)p(d, r))]}.

ỹ1t (r) is the maximizer of

Wt(ỹ
E) = −(cEt − cRt )ỹ

E −Gt(ỹ
E − εt) + Φt(ỹ

E ∨ ỹ2t (r)),

where “∨” is the maximun operator, i.e., x ∨ y = max{x, y} for any real numbers x and

y. Furthermore,

d̃t(r) = arg max
dt≤d≤dt

[d · p(d, r)− cEt d],

d̃t(x, r) = arg max
dt≤d≤dt

{[d · p(d, r)− cEt d] +Wt((x− d) ∨ ỹ1t (r))}.

3.2. The impact of reference price effects on optimal strategies

In this subsection, we analyze the impact of the reference price on the optimal pricing

and inventory policies. To do this, we need the following lemma.

Lemma 3. For t = 1, 2, . . . , T , Vt(x, r) is supermodular in (x, r).

Corollary 1. For t = 1, 2, . . . , T , we have

(i) Jt(y
E , yR, d, r) is supermodular in (yE , r).

(ii) Jt(y
E , yR, d, r) is supermodular in (yR, r).

(iii) Jt(y
E , yR, d, r) is supermodular in (d, r).

Based on this, we can characterize the reference price effects on optimal policy

parameters via the following theorem.

Theorem 3. For t = 1, 2, . . . , T , we have

(i) The optimal inventory level after expedited order yE
∗

t is increasing in rt.

(ii) The optimal inventory level after regular order yR
∗

t is increasing in rt.

(iii) The optimal mean demand is d∗t increasing in rt.

(iv) The optimal price is p∗t increasing in rt.

(v) The optimal profit is V ∗
t (x, r) increasing in rt.
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4. Operational Impact of Reference Price Effects

Since the impact of supply diversification has been discussed in Zhou and Chao [38].

This section mainly analyze the operational impact from the perspective of reference

price effects by comparing our model with ZC model. Although the ZC model considers

both regular and expedited supply modes, it doesn’t take the reference price effects into

consideration. To distinguish the ZC model from ours, we use the superscript f to signify

the notation for the ZC model. The following is the main results on the impact of adding

reference price effects.

Theorem 4. After the reference price effects is considered, the optimal profit-to-go func-

tion and optimal policy parameters satisfy, for t = 1, 2, . . . , T ,

(i) V ∗
t (x, r) ≥ V

f∗

t (x).

(ii) yE
∗

t (r) ≥ yE
f∗

t .

(iii) yR
∗

t (r) ≥ yR
f∗

t .

(iv) d∗t (x, r) ≥ d
f∗

t (x).

(v) p∗t (x, r) ≥ p
f∗

t (x).

Proof. This follows directly from Theorem 3 that the ZC model is a special case of our

model, i.e., rt = 0 for all t = 1, 2, . . . , T . �

This theorem can be intuitively illustrated as follows. Part (i) states that when more

consideration of the customers’ behavior, the firm can only do better, thus its maximum

profit does not go down. Part (ii), (iii), (iv) and (v) indicate that with the increase of

customers’ reference price, the optimal mean demand will increase and the optimal price

will rise as well. In addition, considering the lead time for regular replenishment and the

incremental demand under reference price effects, the firm orders more by expedited and

regular supply to raise the inventory level so as to meet the customers’ needs as much

as possible.

5. Numerical Experiments

In this section, we present several numerical experiments to illustrate the impact of

reference price on the optimal policy parameters (the optimal inventory level for expe-

dited supply, the optimal inventory position for regular supply, and the optimal price).

Besides, we analyze the operational impacts on firm’s profit by adding reference price

effects via comparing with ZC model. All experiments below are performed in MATLAB

R2014b on a laptop with an Intel(R) Core (TM) i5-7200U central processing unit CPU

(2.50 GHz, 2.70GHz) and 8.0 GB of RAM running 64-bit Windows 10 Enterprise.

Consider a system with planning horizon T = 4. We perform experimental analysis

with the following stationary parameter values: cE = 18, cR = 15, η+ = 1.5, η− = 2.5,

γ = 0.95. The mean demand function is given by d(p, r) = 200−2p+1.5max{r−p, 0}+

2.5min{p − r, 0}, the inventory holding or backlogged cost is H(x) = hmax{x, 0} +
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bmax{−x, 0} with h = 2, b = 20 and x ∈ [0, 100]. εt ∼ Uniform[−1, 1]. We report the

results for α = 0.35, 0.55, 0.75.

We first analyze the impact of changes in reference price r on the optimal pricing and

inventory strategies. It is shown from Figure 1−4 that the optimal inventory level for

expedited supply yE
∗
, the optimal inventory position for regular supply yR

∗
, the optimal

price p∗ and the optimal profit V ∗ are increasing in the reference price r, which is

consistent with Theorem 3. Table 1−4 list the operational impact from the perspective

of reference price effects by comparing our model with ZC model, which is consistent

with Theorem 4. Moreover, from Figure 1 and Table 1, we can see that the slope of yE
∗

increases with the increase of reference price r (when r > 25). This indicates that with the

increase of customers’ reference price, customers valuation of commodities will increase,

the firm will raise its inventory level for expedited supply higher to meet the increasing

demand. Figure 2 and Table 2 for yR
∗
presents the similar features. Figure 4 and Table

4 illustrate that considering the reference price effects will bring substantial profits to the

firm. Therefore, reference price has a positive effect on the optimal inventory level for

expedited supply yE
∗

, the optimal inventory position for regular supply yR
∗

, the optimal

price p∗ and the optimal profit V ∗.

Next, we examine how the reference price parameter α (i.e., memory α) factor affects

the firm’s optimal pricing and inventory strategies. Figures 1−3 and Tables 1−3 suggest

that with the increase of α, i.e., the customers’ ability to remember past prices becomes

weaker. This means that customers adapt to the new price information at a lower rate

and less loyalty, then the firm should decrease its sales price while reducing both the

inventory level for expedited supply and the inventory position for regular supply. This

demonstrates that the memory factor α has a negative impact on the optimal price and

inventory decisions. Figure 4 and Table 4 show that the optimal profit will decrease as

α increase, i.e., the memory factor α also has a negative impact on profit.

Figure 1: The impact of reference price r on optimal inventory level for expedited supply.
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Figure 2: The impact of reference price r on optimal inventory position for regular supply.

Figure 3: The impact of reference price r on optimal price.

Table 1: The comparison of optimal inventory level for expedited supply between ours and ZC
model.

yE
∗

α ZC Our model
model r = 10 r = 15 r = 20 r = 25 r = 30 r = 35

0.35 76.388 104.610 106.580 108.690 110.490 114.450 117.510

0.55 76.388 100.900 102.720 105.460 107.950 112.470 116.280

0.75 76.388 94.006 97.928 101.44 104.79 109.98 114.73
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Figure 4: The impact of reference price r on optimal profit.

Table 2: The comparison of optimal inventory position for regular supply between ours and ZC
model.

yR
∗

α ZC Our model
model r = 10 r = 15 r = 20 r = 25 r = 30 r = 35

0.35 101.140 132.440 136.050 138.500 140.300 144.320 147.400

0.55 101.140 128.670 132.860 135.210 137.720 142.320 146.140

0.75 101.140 124.800 129.590 132.600 135.230 139.790 144.560

Table 3: The comparison of optimal price between ours and ZC model.

p∗

α ZC Our model
model r = 10 r = 15 r = 20 r = 25 r = 30 r = 35

0.35 28.967 36.615 37.712 38.943 39.892 41.429 42.110

0.55 28.967 35.610 36.854 38.226 39.328 40.991 41.847

0.75 28.967 34.366 35.790 37.332 38.625 40.437 41.492

Table 4: The comparison of optimal profit between ours and ZC model.

V ∗

α ZC Our model
model r = 10 r = 15 r = 20 r = 25 r = 30 r = 35

0.35 1510.7 2027.8 2186.0 2301.0 2422.0 2586.5 2684.5

0.55 1510.7 1984.9 2152.0 2288.5 2404.4 2586.7 2672.3

0.75 1510.7 1966.8 2153.3 2289.7 2394.4 2551.5 2661.2
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6. Conclusions

Our research complements the existing research stream in coordinating pricing and

inventory replenishment decisions from two aspects. On the one hand, we consider

inventory planning decisions for supply diversification, i.e., regular and expedited supply

modes. On the other hand, we consider the impact of the customers’ behavior (i.e.

customers’ reference price) on pricing and inventory replenishment decisions. We study

the optimal pricing and ordering flexibility strategies under reference price effects. The

operational impact shows that considering the supply flexibility and reference price effects

simultaneously will bring substantial profit. The above research generalized the results

of Zhou and Chao [38].

Our research also provides some inspiration for management practice, which can be

adopted by firms to formulate its pricing and inventory strategies with the reference price

effects.

(1) When the reference price effects is considered, customers’ ability to remember past

prices has a significant effect on managing the optimal pricing and inventory decisions.

As memory factor α increases, customers adapt to the new price information at a

lower rate and become less loyal to the commodity. Hence, the firms should reduce the

sales price to achieve a positive reference price effects, thereby stimulating demand.

At the same time, the inventory level for expedited supply and the optimal inventory

position for regular supply should also be reduced so as to reduce the holding cost

caused by demand uncertainty.

(2) The reference price has a positive effect on the optimal inventory level for expedited

supply, the optimal inventory position for regular supply, the optimal price and the

optimal profit. Firms should make good use of this positive effect of reference price

to raise their profit.

Though this paper has identified the effects of reference price on dynamic pricing and

ordering flexibility decisions, there still some shortcomings that can be investigated in

the future. First, this paper analyzes the pricing and order flexibility decisions of a single

firm under reference price effects, and unaware of the influence of reference price effects

on suppliers. An interesting future research topic is to examine the pricing and inventory

decisions for suppliers, and to design an appropriate coordination mechanism so that a

win-win outcome for both parties can be obtained. Second, in our study, the customers’

reference price can be observed by firms. However, the information on customers’ refer-

ence price is difficult to get in reality. Thus, demand learning can be incorporated into

formulating pricing and inventory strategy in the presence of the reference price effects.

Third, with the rapid development of information technology centered on the mobile

Internet, customers’ purchase patterns are also diversified. In this case, how to study

the reference price of customers on firms’ pricing and inventory decisions is also one of

the interesting and meaningful research directions in the future.
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Appendix

Proof of Lemma 1 (i). The monotonicity of Vt(x, r) in x is straightforward because

Jt(y
E , yR, d, r) is independent of x and the feasible set {(yE , yR, d) | yR ≥ yE ≥ x, dt ≤

d ≤ dt} shrinks as x increases. The monotonicity of Vt(x, r) in r is similar to that of

Theorem 1 in Güler et al. [15].

Next, we prove (ii) and (iii) by induction. Starting from t = T , it is obvious that

VT+1(x, r) = 0 is concave, then (iii) is true. For (ii), each term in Eq. (2.3) is concave and

concavity is preserved by maximization, so (ii) holds for t = T . Suppose that (ii) and

(iii) are valid for t = k + 1. Each terms in Eq. (2.3) is concave except for Vk+1(y
R − d−

εk, αr+(1−α)p(d, r)), we thus need the concavity of Vk+1(y
R−d−εk, αr+(1−α)p(d, r))

in (yR, d, r). By defining τ̃(yR, d, εk) and r̃(d, r) as:

τ̃(yR, d, εk) = yR − d− εk, r̃(d, r) = αr + (1− α)p(d, r).

. Since pk(dk, rk) is concave in (dk, rk) by Assumption 1, then the following holds for

any pair (yR1 , y
R
2 ), (d1, d2) and (r1, r2):

τ̃
(yR1 + yR2

2
,
d1 + d2

2
, εk

)

=
yR1 + yR2

2
+

d1 + d2

2
− εk =

1

2
(yR1 + d1− εk)+

1

2
(yR2 + d2− εk),

r̃
(d1 + d2

2
,
r1 + r2

2

)

≥
1

2
r̃(d1, r1) +

1

2
r̃(d2, r2).

Thus we obtain

Vk+1

(

τ̃
(yR1 + yR2

2
,
d1 + d2

2
, εk

)

, r̃
(d1 + d2

2
,
r1 + r2

2

)

)

≥ Vk+1

(

τ̃
(yR1 + yR2

2
,
d1 + d2

2
, εk

)

,
1

2
r̃(d1, r1) +

1

2
r̃(d2, r2)

)

= Vk+1

(

1

2
τ̃(yR1 + d1 + εk) +

1

2
τ̃(yR1 + d1 + εk),

1

2
r̃(d1, r1) +

1

2
r̃(d2, r2)

)

≥
1

2
Vk+1

(

τ̃(yR1 + d1 + εk), r̃(d1, r1)
)

+
1

2
Vk+1

(

τ̃(yR2 , d2, εk), r̃(d2, r2)
)

where the first and second inequality follows from (i) and the induction assumption,

respectively. We thus get the concavity of in Vk+1(y
R − d − εk, αr + (1 − α)p(d, r)) in

(yR, d, r). Then Jk(y
E , yR, d, r) is joint concave in (yE , yR, d, r). Therefore, Vk(x, r) is

joint concave in (x, r). �
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Proof of Lemma 2. The proof is similar to that of Lemma 2 in Zhou and Chao [38].�

Proof of Theorem 1. (i) and (iii) is the direct consequence of Lemma 2.

(ii) Let

yR(yE, r) = arg max
yR≥yE

Jt(y
E , yR, d(yE , yR), r),

then yR is increasing in yE follows from Lemma 2 (ii) and Theorem 2.2.8 in Simchi-Levi

et al. [32]. This together with (i) yields the result. �

Proof of Theorem 2. The result follows from the concavity of Jt(y
E , yR, d, r) and

Eqs. (3.1)-(3.5). �

Proof of Lemma 3. We prove this lemma by induction. Starting from t = T , it is

obvious that VT+1(x, r) = 0 is supermodular in (x, r). Thus JT (y
E , yR, d, r) is super-

modular in (x, r). Thus JT (y
E , yR, d, r) is supermodular in (x, r) since the first four

terms in JT (y
E , yR, d, r) are independent of x. Following the maximization preserves

supermodularity yields the supermodularity of VT (x, r) in (x, r).

Assume that the result holds for t = k + 1. Next, we need to show that the result

is still true for t = k. Since Jk(y
E , yR, d, r) is independent of x, we only need to proof

the supermodularity of Jk(y
E , yR, d, r) in (yE, r), (yR, r) and (d, r), which is equivalent

to the supermodularity of Jk(y
E , yR, d, r) in (yE , x, r), (yR, x, r) and (d, x, r).

Firstly, we proof the supermodularity of Jk(y
E , yR, d, r) in (yE, r). The terms in

Jk(y
E , yR, d, r) either depends on yE or r or is a constant with respect to yE and r

except for −G(yE , d), so it suffices to show the submodularity of G(yE , d) in (yE , r).

For any pair (yE1 , y
E
2 ) and (r1, r2) with yE1 > yE2 and r1 > r2. Let

τ1 = yE1 − d(p, r1)− εk, τ2 = yE1 − d(p, r2)− εk,

τ3 = yE2 − d(p, r1)− εk, and τ4 = yE2 − d(p, r2)− εk,

By the monotonicity of the mean demand function dk, we have τ3 < τ4. Thus, by the

concavity of Hk, we have

Hk(τ1)−Hk(τ3) =Hk(τ3 + (yE1 − yE2 ))−Hk(τ3)

≤Hk(τ4 + (yE1 − yE2 ))−Hk(τ4)

=Hk(τ2)−Hk(τ4),

this implies that Hk(y
E
1 − d(p, r)− εk)−Hk(y

E
2 − d(p, r)− εk) is decreasing in r. Hence,

G(yE , d) is submodular in (yE, r), then −G(yE , d) is supermodular in (yE , r). This gives

the supermodularity of Jk(y
E , yR, d, r) in (yE , r).

Secondly, we proof the supermodularity of Jk(y
E, yR, d, r) in (yR, r). The terms in

Jk(y
E , yR, d, r) either depends on yR or r or is a constant with respect to yR and r except

for Vk+1(y
R − d − εt, αr + (1 − α)p(d, r)), so it suffices to show the supermodularity of

Vk+1(y
R − d− εt, αr + (1− α)p(d, r)) in (yR, r).
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Consider arbitrary pair (yR1 , y
R
2 ) and (r1, r2) with yR1 > yR2 and r1 > r2. Fix εk, let

(τ1, ξ1) = (yR1 − d(p, r1)− εk, ξ1), (τ2, ξ2) = (yR1 − d(p, r2)− εk, ξ2),

(τ3, ξ1) = (yR2 − d(p, r1)− εk, ξ1), and (τ4, ξ2) = (yR2 − d(p, r2)− εk, ξ2),

where ξ1 = αr1 + (1 − α)p(d, r1), ξ2 = αr2 + (1 − α)p(d, r2). Then we obviously have

ξ1 > ξ2, τ3 < τ4. Thus, we get

Vk+1(τ1, ξ1)− Vk+1(τ3, ξ1) = Vk+1(τ3 + (yR1 − yR2 ), ξ1)− Vk+1(τ3, ξ1)

≥ Vk+1(τ4 + (yR1 − yR2 ), ξ1)− Vk+1(τ4, ξ1)

= Vk+1(τ2, ξ1)− Vk+1(τ4, ξ1)

≥ Vk+1(τ2, ξ2)− Vk+1(τ4, ξ2),

where the first inequality follows from the concavity of Vk+1, and the last inequality

follows from the supermodularity of Vk+1(τ, ξ) in (τ, ξ) by induction assumption, which

implies that Vk+1(y
R
1 − d(p, r) − εk, ξ) − Vk+1(y

R
2 − d(p, r) − εk, ξ) is increasing in r.

We thus get the supermodularity of Vk+1(y
R − d − εk, αr + (1 − α)p(d, r)) in (yR, r).

Consequently, Jk(y
E , yR, d, r) is supermoduar in (yR, r).

Thirdly, the supermodularity of Jk(y
E , yR, d, r) in (d, r) is similar to that of Theorem

6 in Güler et al. [16].

In summary, Jk(y
E, yR, d, r) is supermodular in (x, r). So Vk(x, r) is supermodular

in (x, r). This completes the proof. �

Proof of Theorem 3. (i), (ii) and (iii) are the direct consequence of Corollary 1, while

(iv) is the direct consequence of (iii) and Assumption 1. (v) has been proved in Lemma

1. �
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