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Abstract

This paper develops an economic production quantity (EPQ) model considering predic-
tive maintenance and trade credit with an imperfect production process. Predictive main-
tenance, with the help of sensors and data analysis, can execute maintenance before the
system becomes out of control and can improve system reliability. We also consider a trade
credit policy that allows manufacturers to delay their payments. Based on the relationships
among production runtime, inventory cycle time, and credit period, we divide the model into
three cases. The objective is to determine the optimal production runtime and predictive
maintenance effort to maximize the total expected profit. We develop a piecewise nonlinear
optimization algorithm to solve the problems described. Based on numerical experiments,
we discuss the influences of system parameters on decisions and profit. The results of this
study can serve as references for business managers and administrators.

Keywords: Inventory, imperfect production system, predictive maintenance, corrective
maintenance, trade credit.

1. Introduction

With the help of Industry 4.0, predictive maintenance can improve production sys-
tems through sensor adoption, advanced monitoring, and forecasting techniques that
can reduce the difference between imperfect and perfect production systems. Predictive
maintenance is a new strategy to perform maintenance before control is lost (or system
breakdown). A predictive maintenance can be subdivided into three stages: (1) the
characterize and measurement of maintenance needs, (2) ordering of the needed items,
and (3) formulation of a predictive maintenance procedure (see Terence [19]). Predictive
maintenance is used extensively for monitoring the conditions of various machines (see
Wen et al. [23]). This policy could successfully be applied to a production system when
it breaks down or is in an out-of-control state (produces more imperfect items).

However, there is little research considering the economic-production-quantity (EPQ)
model with predictive and corrective maintenance policies. Most EPQ research consid-
ered preventive, corrective, and maintenance policies. Ben-Daya and Makhdoum [2] in-
vestigated the effect of various preventive maintenance policies on the joint optimization
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of the economic production quantity (EPQ) and the economic design of the control chart.

Ben-Daya [1] developed a model that links EPQ, quality, and maintenance requirements

for a process having a general deterioration distribution and where the maintenance level

is optimized. Jamal et al. [8] proposed an EPQ model in which defective products from

each production cycle are accumulated until N equal cycles. Pal et al. [13] dealt with

an EPQ model in an imperfect production system. Taleizadeh et al. [16] presented an

EPQ inventory model with an interruption in process, scrap, and rework. Sarkar et al.

[14] considered an EPQ model with a random defective rate and rework process for a

single-stage manufacturing system with planned backorders. Wen et al. [23] integrated

predictive maintenance in an EPQ model in which an autoregressive integrated-moving-

average model was adopted to predict a system’s health. Huang et al. [7] presented

an EPQ model with an imperfect production process and corrective maintenance. They

focused on examining an imperfect production system with shortages. Sett et al. [15]

considered the optimal buffer inventory and inspection policy for an imperfect produc-

tion system with preventive maintenance. In a different way, we consider the predictive

maintenance effort as one of our decision variables. The objective is to determine the

optimal predictive maintenance effort and production runtime to maximize the total

expected profit.

Another policy that should be considered in an EPQ model is trade credit. Trade

credit enables customers to delay their payments. Goyal [5] first proposed an economic

order quantity model that enables suppliers to allow customers to delay their payments.

Chung and Huang [4] extended Goyal’s [5] model to a case for which the units are replen-

ished at a finite rate. Huang [6] modeled a retailer’s inventory system to investigate the

optimal retailer’s replenishment decisions under two levels of trade credit policy within

the EPQ framework. Teng and Chang [18] extended Huang’s [6] EPQ model to comple-

ment the shortcomings of the model. Recently, Tsao et al. [20] demonstrated an EPQ

model by considering the reworking of imperfect items and trade credit. Kreng and

Tan [9] proposed an EPQ model to determine the optimal replenishment decision with

an imperfect-quality product under a supply chain trade credit policy. Chen et al. [3]

presented economic production quantity models developed for deteriorating items under

conditions of upstream full-trade credit and downstream partial-trade credit. Tsao et al.

[21] proposed an imperfect production quantity to determine the maintenance frequency

under trade credit conditions. Tayal et al. [17] developed an integrated production

inventory model for perishable products with a trade credit period and investment in

preservation technology. Tsao et al. [22] developed an EPQ model based on radio fre-

quency identification adoption, trade credit policy, and reworking of imperfect products.

However, all these trade credit studies considered corrective maintenance or preventive

maintenance. We consider both predictive maintenance and corrective maintenance to

adapt to the era of Industry 4.0.

Because trade credit is a widespread and popular payment method in modern busi-

ness and predictive maintenance activity is important in an intelligent production system,

thus, in order to respond to the real business behavior, we consider predictive mainte-

nance and trade credit in modeling production systems in the Industry 4.0 era. This
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paper contributes to the literature and to practice are as follows. First, this is the first

study to incorporate the predictive maintenance decision into the imperfect production

system under process deterioration and trade credit. In our model, we assumed that

the production system may shift from an in-control to an out-of-control state, causing a

higher defective rate. Predictive maintenance is conducted to improve system reliability,

and corrective maintenance is executed when the production system is at the out-of-

control state. Second, we also propose an algorithm to solve the three-branch piecewise

nonlinear problem and obtain the optimal production runtime and predictive mainte-

nance efforts. Finally, a numerical analysis is conducted for determining the effects of

changing parameters, and management implications are provided.

The remainder of this work is organized as follows. In Section 2, we describe the

assumptions, the notation, and the mathematical model. An approach to the solution

is proposed in Section 3. In Section 4, we present the numerical analysis. Finally, in

Section 5, some conclusions are drawn, and future research is discussed.

2. Model Formulation

In this model, we mainly formulate the EPQ model to determine the optimal pre-

dictive effort and the production run time while maximizing the expected profit. The

supplier provides the manufacturer a permissible delay in payments (trade credit) and

the manufacturers could sell the goods and accumulate revenue and earn interest within

the trade credit period. Both of interests charged and earned are calculated based on

time in our EPQ model to maximize the manufacturer’s profit. In the EPQ model, a

constant production rate starts at t = 0, and continues up to t = Tp where the inventory

level reaches the maximum level. Production then stops at t = Tp; at the beginning of

the production process, the system is in an in-control state, and it is possible for the

system to shift to an out-of-control state as time goes by while the system continues to

produce products (Figure 1). Suppose the manufacturer puts effort for predictive main-

tenance into the production system and makes decisions on its predictive maintenance

effort ρ and production runtime Tp.

Figure 1: Replenishment cycle of imperfect EPQ model with perfect repair and rework.
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This study uses the following notation.

Decision variables:

ε Predictive maintenance efforts.

Tp Length of production runtime.

Parameters:

P Production rate per unit time.

d1 Demand rate of perfect items per unit time.

d2 Demand rate of imperfect items per unit time.

d Total remand rate per unit time, d = d1 + d2.

M Trade credit period (unit time).

T Inventory cycle time (unit time), T =
PTp

d1 + d2
.

Ie Rate of interest earned 0 ≤ Ie ≤ 1.

IP Rate of interest charged 0 ≤ IP ≤ 1.

τ The production time until the system shift began to be out of control (unit

time).

S1 Selling price of perfect quality per item (S1 > Cm).

S2 Selling price of defective quality per item (S2 > Cm).

CS Setup cost per unit time.

h Inventory cost per unit per unit time.

Cinsp Inspection cost per unit.

Cm Manufacturing cost per unit.

CCM Corrective maintenance cost per time.

CPdM Predictive maintenance cost per time.

ain Defective rate when the system is in control.

aout Defective rate when the system is out of control.

γ, η The coefficient of failure rate function with respect to preventive maintenance

effort (γ > 0 and η > 0).

λ The number of crashes.
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The mathematical model is developed under the following assumptions:

a. τ is a random variable that is also the time from the beginning to the time when the

system is out of control. τ is assumed to be exponentially distributed with a mean

of λ−1. A similar assumption can be seen in Lee and Rosenblatt [10].

b. The relationship between the number of crashes and predictive maintenance efforts

is negative and satisfies λ = γ+ηe−ε (where γ > 0 and η > 0). The higher predictive

maintenance effort decreases the number of crashes (see Mobley [11]).

c. The supplier provides the manufacturer a permissible delay in payments. During

credit period the account is not settled, generated sales revenue is deposited in an

interest-bearing account with interest rate Ie. At the end of the permissible delay,

the manufacturer pays off all units ordered and starts paying for the interest charges

on the raw material in stocks with interest rate IP . A similar assumption can be seen

in Ouyang and Chang [12]; Kreng and Tan [9]; Tayal et al. [17], etc. The interest

earned and charges of manufactures are also calculated based on the perfect- and

imperfect-items sale revenues in each period.

d. Selling price of defective quality items is lower than selling price of perfect quality

items (S2 < S1).

e. The production operation starts at time 0, and system status is in control.

f. Production length is fixed for each round.

g. System will keep on producing items in out-of-control status with defective rate aout.

h. Corrective maintenance cannot be executed during system operation.

In our model, the components of the mathematical model are calculated as follows:

• The annual revenue

(1) Annual perfect-item sale revenue

Let Y be the number of perfect items in each production cycle

Y =

{

(1− ain)PTP , if τ ≥ TP ,

(1− ain)Pτ + (1− aout)P (TP − τ), if τ < TP .
(2.1)

Then, the expected number Y for every production cycle is

E(Y ) =

∫

∞

TP

(1−ain)PTPλe
−λτdτ +

∫ TP

0
[(1−ain)Pτ + (1−aout)P (TP −τ)]λe−λτdτ

=− P (1− ain)
e−λTP − 1

λ
+ P (1− aout)

(

TP +
e−λTP − 1

λ

)

. (2.2)

The annual sale revenue from perfect items is

S1E(Y )

T
=
S1E(Y )

PTP
(d1+d2)



20 Y.-C. TSAO, P.-L. LEE, Q. H. ZHANG, T.-L. VU, K. C. FANG

=S1(d1 + d2)
[

− (1−ain)
e−λTP − 1

λTP
+ (1− aout)

(

1+
e−λTP − 1

λTP

)]

. (2.3)

McClaurin series are used to approximate e−λTP ≈ 1− λTP +
(λTP )

2

2
. Thus, we can

rewrite the annual perfect-item revenue as

S1E(Y )

T
=
S1E(Y )

PTP
(d1+d2) ≈

1

2
S1(d1 + d2)(2− λTPaout + ain(−2 + λTP ))

=
1

2
S1(d1 + d2)

(

2− (γ + ηe−ε)TPaout + ain(−2 + (γ + ηe−ε)TP )
)

. (2.4)

(2) Annual imperfect-item sale revenue

Let N be the number of imperfect items in each production cycle

N =

{

ainPTP , if τ ≥ TP ,

ainPτ + aoutP (TP − τ), if τ < TP .
(2.5)

Then, the expected number N for every production cycle is

E(N) =

∫

∞

TP

ainPTPλe
−λτdτ +

∫ TP

0
[ainPτ + aoutP (TP−τ)]λe−λτdτ

=− Pain
e−λTP − 1

λ
+ Paout

(

TP +
e−λTP − 1

λ

)

. (2.6)

The annual sale revenue from imperfect items is

S2E(Y )

T
=
S2E(Y )

PTP
(d1+d2)

=S2(d1 + d2)
[

− ain
e−λTP − 1

λTP
+ aout

(

1+
e−λTP − 1

λTP

)]

. (2.7)

Using McClaurin series, we can rewrite the annual imperfect-item revenue as

S2E(Y )

T
≈1

2
(d1 + d2)S2[aoutλTP + ain(2− λTP )]

=
1

2
(d1 + d2)S2

[

aout(γ + ηe−ε)TP + ain(2− (γ + ηe−ε)TP )
]

. (2.8)

(3) Interest earned

This model is based on three major considerations: economic quantity, trade credit,

and predictive maintenance. Because of the credit period length, there are three

cases, (1) when 0 ≤ M ≤ TP (Figure 2); (2) when TP ≤ M ≤ T (Figure 3); and (3)

when T ≤ M (Figure 4), all depending on credit period length M . The inventory

cycle time T =
PTP

(d1 + d2)
. There are three different types interest earned in the three

cases.
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Case I: 0 ≤ M ≤ TP

TIe1 =
(

S1ie

∫ M

0
d1tdt+ S2ie

∫ M

0
d2tdt

) (d1 + d2)

PTP
=

M2(d1 + d2)ie(d1S1 + d2S2)

2PTP
.

(2.9)

Figure 2: Total accumulation of interest charged and earned when 0 ≤ M ≤ TP .

Case II: TP ≤ M ≤ T

TIe2 =
(

S1ie

∫ M

0
d1tdt+ S2ie

∫ M

0
d2tdt

) (d1 + d2)

PTP
=

M2(d1 + d2)ie(d1S1 + d2S2)

2PTP
.

(2.10)

Figure 3: Total accumulation of interest charged and earned when TP ≤ M ≤ T .
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Case III: T ≤ M

TIe3 =
(

S1ie

∫ T

0
d1tdt+ S2ie

∫ T

0
d2tdt

)(d1 + d2)

PTP

+ ie[S1d1T (M − T ) + S2d2T (M − T )]
(d1 + d2)

PTP

=
ieT (d1 + d2)(S1d1 + S2d2)(2M − T )

2PTP

=
(−PTP + 2M(d1 + d2))ie(d1S1 + d2S2)

2(d1 + d2)
. (2.11)

Figure 4: Total accumulation of interest charged and earned when T ≤ M .

• The annual cost consists of the following components:

(1) Annual setup cost

TS =
(d1 + d2)CS

PTP
. (2.12)

(2) Annual inventory cost

TI =
h× TP [P − (d1 + d2)]

2
. (2.13)

(3) Annual inspection cost

TI =
(d1 + d2)Cinsp

PTP
× PTP = (d1 + d2)Cinsp. (2.14)

(4) Annual manufacturing cost

TM =
(d1 + d2)Cm

PTP
× PTP = (d1 + d2)Cm. (2.15)
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(5) Annual predictive maintenance cost

TPM =
(d1 + d2)

PTP
× ε× TP × CPdM . (2.16)

(6) Annual corrective maintenance cost

TCM =
CCM (d1 + d2)(1 − e−λTP )

PTP
≈ CCM (d1 + d2)λ

P

(

1− λTP

2

)

=
CM (d1 + d2)(γ + ηe−ε)

P

[

1− (γ + ηe−ε)TP

2

]

. (2.17)

(7) There are three different types of interest charged in the three cases (Figures 1∼3).

Case I: 0 ≤ M ≤ TP

TIc1 =Cmip

(

∫ TP

M
t(P − (d1 + d2))dt

∫ T

TP

(d1 + d2)(T − t)dt
)(d1 + d2)

PTP

=
Cmip(d1 + d2)

(

(d1 + d2)(M
2 + T 2 − 2TPT ) + P (−M2 + TP

2)
)

2PTP

=
CmIP (d1 + d2)

[

(d1 + d2)
(

M2 + PTP
2(−2d1−2d2+P )
(d1+d2)2

)

+ P (−M2 + TP
2)
]

2PTP
. (2.18)

Case II: TP ≤ M ≤ T

TIc2 =
(d1 + d2)

PTP
Cmip

∫ T

M
(d1 + d2)(T − t)dt =

Cmip(d1 + d2)
2(M − T )2

2PTP

=
(M(d1 + d2)− PTP )

2ipCm

2PTP
. (2.19)

Case III: T ≤ M

There is no interest charged in this case.
After summarizing the above costs and revenues, the model can be formulated as

three extensions, as below.

Case I: 0 ≤ M ≤ TP

ETP1(TP , ε)

=
1

2
S1(d1+d2)(2−λTPaout+ain(−2+λTP ))+

1

2
(d1+d2)S2[aoutλTP+ain(2−λTP )]

+
M2(d1+d2)ie(d1S1+d2S2)

2TP
− (d1+d2)CS

PTP
−CCMλ(d1+d2)

P

(

1−λTP

2

)

− (d1+d2)

PTP
εTPCPdM−(d1+d2)Cm−hTP [P−(d1+d2)]

2
−(d1+d2)Cinsp

−
Cmip(d1+d2)

[

(d1+d2)
(

M2 + P (−2d1−2d2+P )
(d1+d2)2

)

+P (−M2+TP
2)
]

2PTP
. (2.20)
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Case II: TP ≤ M ≤ T

ETP2(TP , ε)

=
1

2
S1(d1+d2)(2−λTP aout+ain(−2+λTP ))+

1

2
(d1+d2)S2[aoutλTP+ain(2−λTP )]

+
M2(d1+d2)ie(d1S1+d2S2)

2TP
− (d1+d2)CS

PTP
−(d1+d2)Cinsp−(d1+d2)Cm

− (d1+d2)

PTP
εTPCPdM−hTP [P−(d1+d2)]

2
−CCMλ(d1+d2)

P

(

1−λTP

2

)

− (M(d1+d2)−PTP )
2ipCm

2PTP
. (2.21)

Case III: T ≤ M

ETP3(TP , ε)

=
1

2
S1(d1+d2)(2−λTPaout+ain(−2+λTP ))+

1

2
(d1+d2)S2[aoutλTP+ain(2−λTP )]

+
(−PTP+2M(d1+d2))ie(d1S1+d2S2)

2(d1+d2)
− (d1+d2)CS

PTP
−(d1+d2)Cinsp−

d1+d2

PTP
εTPCPdM

−(d1+d2)Cm−hTP [P−(d1+d2)]

2
−CCMλ(d1+d2)

P

(

1−λTP

2

)

. (2.22)

3. Solution Approach

The objective of the function is to determine the optimal production runtime (T ∗

P )

and predictive maintenance (ε∗) to maximize the annual profit.

ETP (TP , ε) =











ETP1(TP , ε), 0 ≤ M ≤ T,

ETP2(TP , ε), TP ≤ M ≤ T,

ETP3(TP , ε), M ≥ T.

(3.1)

To address the problem, three cases are considered.

Case I: 0 ≤ M ≤ TP

In Case I, the second-order derivative of ETP1(TP , ε) with respect to TP is

d2ETP1(TP , ε)

dTP
2 =

(d1+d2)
[

−2CS+ipCm(P (2+M2)−dM2− P 2

d1+d2
)+ieM

2(d1S1+d2S2)
]

PTP
3 .

(3.2)

If 2CS > ipCm(−dM2+P (2+M2)−dM2− P 2

d1+d2
)+ieM

2(d1S1+d2S2), ETP1(TP , ε) is

a concave function of TP . Therefore, the production runtime TP is derived by solving
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dETP1(TP , ε)

dTP
= 0, so we have

T ∗

P1 =
√

(d1+d2)

√

−2CS+ipCm(P (2+M2)−dM2− P 2

d1+d2
)+ieM2(d1S1+d2S2)

/[

(d1+d2)(γ + ηe−ε)2CCM + (2(d1 + d2)
2 − 3P (d1 + d2) + P 2)ipCm

+ P (h(d1 + d2 − P ) + (γ + ηe−ε)(d1 + d2)(S1 − S2)(ain − aout))
]1/2

. (3.3)

To ensure M ≤ TP in Case I, we substitute Equation (3.3) into M ≤ TP to obtain

the below equations.

2CS ≤− M2[(d1+d2)(γ + ηe−ε)2CCM + (2(d1 + d2)
2 − 3P (d1 + d2) + P 2)ipCm]

(d1+d2)

+
M2[P (h(d1 + d2 − P ) + (γ + ηe−ε)(d1 + d2)(S1 − S2)(ain − aout))]

(d1+d2)

+ ipCm

(

P (2 +M2)− dM2 − P 2

(d1 + d2)

)

+ ieM
2(d1S1 + d2S2). (3.4)

If 2CS ≤ ipCm(P (2+M2)− dM2 +− P 2

(d1+d2)
) + ieM

2(d1S1 + d2S2), which means

d2ETP1(TP , ε)

dTp
2 ≥ 0, then ETP1(TP , ε) is not a concave function of TP . We must use a

search algorithm to obtain optimal solutions of the production runtime and predictive

maintenance. Let

G1 =− M2[(d1+d2)(γ + ηe−ε)2CCM + (2(d1 + d2)
2 − 3P (d1 + d2) + P 2)ipCm]

(d1+d2)

− M2[P (h(d1 + d2 − P ) + (γ + ηe−ε)(d1 + d2)(S1 − S2)(ain − aout))]

(d1+d2)

+ ipCm

(

P (2 +M2)− dM2 − P 2

(d1 + d2)

)

+ ieM
2(d1S1 + d2S2). (3.5)

Gα =ipCm

(

P (2 +M2)− dM2 − P 2

(d1 + d2)

)

+ ieM
2(d1S1 + d2S2). (3.6)

Based on the above analyses, we discuss the solution for Case 1 in Lemma 1.

Lemma 1.

(1) If G1 < 2CS, there is no feasible solution in this case.

(2) If G1 ≥ 2CS and 2CS > Gα, there exists an optimal production runtime T ∗

P1.

(3) If G1 ≥ 2CS and 2CS ≤ Gα, use the search algorithm to search the maximum value

of ETR1(TP , ε).
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• Case II: TP ≤ M ≤ T

In Case II, the second-order derivative of ETP2(TP , ε) with respect to TP is

d2ETR2(TP , ε)

dTP
2 =

(d1+d2)[−2CS +M2(ie(d1S1 + d2S2)− (d1 + d2)ipCm)]

PTP
3 . (3.7)

If 2CS > M2(ie(d1S1 + d2S2) − (d1 + d2)ipCm), ETP2(TP , ε) is a concave function

of TP . Then, we can derive the production time TP by solving
dETP2(TP , ε)

dTP
= 0 yields

T ∗

P2 =
√

(d1+d2)
√

−2CS+M2[ie(d1S1+d2S2)− (d1 + d2)ipCm]
/[

(d1+d2)(γ + ηe−ε)2CCM + P (h(d1 + d2 − P ) + P ipCm

+ (d1+d2)(γ+ηe−ε)(ain − aout)(S1 − S2))
]1/2

. (3.8)

To ensure TP ≤ M ≤ T in Case II, substitute Equation (3.8) into TP ≤ M ≤ T

(T =
PTP

(d1 + d2)
) to obtain the following equations

−M2(d1+d2)
{

(d1+d2)(γ+ηe−ε)2CM + P (h(d1+d2−P ) + P ipCm

+ (d1+d2)(γ+ηe−ε)(ain − aout)(S1 − S2))
}/

P 2

+M2[(d1+d2)ipCm + ie(d1S1 + d2S2)] ≥ 2CS

≥−M
{

(d1+d2)(γ+ηe−ε)2CCM + P (h[−P + (d1+d2)] + P ipCm

+ (d1+d2)(γ+ηe−ε)(ain − aout)(S1 − S2))
}/

(d1+d2)

+M2[ie(d1S1 + d2S2)− (d1+d2)ipCm]. (3.9)

If 2CS > M2(ie(d1S1 + d2S2)− (d1 + d2)ipCm), ETR2(TP , ε) is not a concave func-

tion of TP . Because of the boundary of TP (TP ∈
[DM

P
,M

]

), the maximum value of

ETR2(TP , ε) will occur at TP =
DM

P
or TP = M . Assume that:

G2 =− M2(d1+d2)(γ + ηe−ε)2CCM

(d1+d2)

− M2P{h[−P + (d1 + d2)] + P ipCm + (d1+d2)(γ + ηe−ε)(ain − aout)(S1 − S2)}
(d1+d2)

−M2[ie(d1S1 + d2S2)− (d1 + d2)ipCm] (3.10)

G3 =− M2(d1+d2)[(d1+d2)(γ + ηe−ε)2CCM ]

P 2

−M2(d1+d2){P (h(d1+d2−P )+P ipCm+(d1+d2)(γ+ηe−ε)(ain−aout)(S1−S2))}
P 2
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−M2[ie(d1S1 + d2S2)− (d1 + d2)ipCm] (3.11)

Gβ =M2[ie(d1S1 + d2S2)− (d1 + d2)ipCm]. (3.12)

Based on above analyses, we discuss the solution for Case 2 in Lemma 2.

Lemma 2.

(1) If 2CS < G2 or 2CS > G3, there is no feasible solution in these cases.

(2) If G2 ≤ 2CS ≤ G3 and 2CS > Gβ, there exists an optimal production runtime T ∗

P2.

(3) If G2 ≤ 2CS ≤ G3 and 2CS ≤ Gβ, the maximum value of ETP2(TP , ε) occurs at

TP =
DM

P
or TP = M .

• Case III: T ≤ M

In Case III (when T ≤ M), the second derivative of ETP3(TP , ε) with association

of TP is

d2ETR3(TP , ε)

dTP
2 = −2(d1+d2)CS

PTP
3 < 0 ∀ TP . (3.13)

ETP3(TP , ε) is the concave function with respect to TP . The production runtime

TP that maximizes ETP3(TP , ε) is derived by solving
dETR3(TP , ε)

dTP
= 0 :

T ∗

P3 =

√
2(d1+d2)

√
CS

√

P 2G4

M2(d1+d2)

(3.14)

where

G4 =
M2(d1+d2)[−(d1+d2)

2(γ + ηe−ε)2CCM ]

P 2

+
M2(d1+d2)[−h(d1+d2)

2 + hP (d1+d2) + P ie(S1d1 + S2d2)]

P

+
M2(d1+d2)(d1+d2)

2(γ + ηe−ε)(−ain + aout)(S1 − S2)

P
. (3.15)

To ensure T ≤ M in Case III, substitute Equation (3.14) into T ≤ M (T =
PTP

(d1 + d2)
) to obtain the below equations

2CS =
M2(d1+d2)[−(d1+d2)

2(γ + ηe−ε)2CCM ]

P 2

+
M2(d1+d2)[−h(d1+d2)

2 + hP (d1+d2) + P ie(S1d1 + S2d2)]

P

+
M2(d1+d2)(d1+d2)

2(γ + ηe−ε)(−ain + aout)(S1 − S2)

P
. (3.16)

Based on the above analyses, we discuss the solution for Case 3 in Lemma 3.
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Lemma 3.

(1) If 2CS < G4, there exists an optimal production runtime T ∗

P3.

(2) If 2CS > G4, there is no feasible solution in this case.

To obtain the optimal value of the predictive maintenance efforts ε∗, we substitute

T ∗

Pi(ε) into the corresponding ETPi(TP , ε), and it simplifies the functions to be a single

decision variable model with ε, i.e.,

ETPi(ε) =











ETP1(ε), when 0 ≤ M ≤ TP ,

ETP2(ε), when TP ≤ M ≤ T,

ETP3(ε), when T ≤ M.

(3.17)

The optimal predictive maintenance effort for each case can be obtained by solving
dETPi(εi)

dεi
= 0, where i = 1, 2, 3. It is necessary to verify the second derivative of

predictive maintenance εi condition of concavity, which means:
d2ETPi(εi)

dεi2
< 0, where

i = 1, 2, 3. Based on Lemmas 1, 2, and 3, the following algorithm can determine optimal

values for T ∗

P and ε∗.

Algorithm

Step 1: For Case I, if 2CS > Gα, go to Step 1.1. If 2CS ≤ Gα, go to Step 1.3.

Step 1.1: If there exists an ε∗11 that satisfies 2CS ≤ G1(ε
∗

11) and the following

conditions,
d2ETP1(ε

∗

11)

dε2
< 0 and

dETP1(ε
∗

11)

dε
= 0, ε∗1 = ε∗11 is the

optimal value for Case I. Then, determine T ∗∗

P1(ε
∗∗

1 ) = T ∗

P1(ε
∗

11) by (3.3),

set ETP ∗

1 (T
∗∗

P1, ε
∗∗

1 ) by (2.20), and go to Step 4. Otherwise, go to Step

1.2.

Step 1.2: If there exists the ε∗1j , satisfy 2CS ≤ G1(ε
∗

1j) and T ∗

P1(ε
∗

1j) ∈ [M,T ].

Allow ETP ∗

1 (T
∗∗

P1, ε
∗∗

1 ) = Max{ETP (T ∗

P1(ε
∗

1j))}, (T ∗∗

P1, ε
∗∗

1 ) is the optimal

value for Case I, so go to Step 4; otherwise, ETP1(TP1, ε1) = ∞.

Step 1.3: If there exists an ε∗12 that satisfies 2CS ≤ G1(ε
∗

12) and TP12(ε
∗

12) = M , an

ε∗13 satisfies 2CS ≤ G1(ε
∗

13) and TP13(ε
∗

13) = T . Allow ETP ∗

1 (T
∗∗

P1(T
∗∗

P1, ε
∗∗

1 )

= Max{ETP1(TP12(ε
∗

12)), ETP1(TP13(ε
∗

13))}, (T ∗∗

P1, ε
∗∗

1 ) is the optimal

value for Case I, so go to Step 4; otherwise, ETP1(TP1, ε1) = ∞.

Step 2: For Case II, if 2CS > Gβ , go to Step 2.1; if 2CS ≤ Gβ , go to Step 2.3.

Step 2.1: If there exists an ε∗21 that satisfies G2(ε
∗

21) ≤ 2CS ≤ G3(ε
∗

21) and the

following conditions,
dETP2(ε

∗

21)

dε
= 0 and

d2ETP2(ε
∗

21)

dε2
< 0, then de-

termine T ∗∗

P2(ε
∗∗

2 ) = T ∗

P2(ε
∗

21) by (3.8), set ETP ∗

2 (T
∗∗

P2, ε
∗∗

2 ) by (2.21), and

go to Step 4. Otherwise, go to Step 2.2.
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Step 2.2: If there exists an ε∗22 that satisfiesG2(ε
∗

22) ≤ 2CS ≤ G3(ε
∗

22) and T ∗

P22(ε
∗

22)

=
DM

P
, an ε∗23 satisfies G2(ε

∗

23) ≤ 2CS ≤ G3(ε
∗

23), and T ∗

P23(ε
∗

23) =

M . Allow ETP ∗

2 (T
∗∗

P2, ε
∗∗

2 ) = Max{ETP2(T
∗

P22(ε
∗

22)), ETP1(T
∗

P23(ε
∗

23))},
then (T ∗∗

P2, ε
∗∗

2 ) is the optimal value for Case I, so go to Step 4; otherwise,

ETP2(TP2, ε2) = ∞.

Step 2.3: If there exists an ε∗24 that satisfiesG2(ε
∗

24) ≤ 2CS ≤ G3(ε
∗

24) and T ∗

P24(ε
∗

24)

=
DM

P
, an ε∗25 satisfies G2(ε

∗

25) ≤ 2CS ≤ G3(ε
∗

25) and T ∗

P25(ε
∗

25) =

M . Allow ETP ∗

2 (T
∗∗

P2, ε
∗∗

1 ) = Max{ETP2(T
∗

P25(ε
∗

25)), ETP1(T
∗

P25(ε
∗

25))},
then (T ∗∗

P2, ε
∗∗

2 ). is the optimal value for Case I, so go to Step 4; otherwise,

ETP2(TP2, ε2) = ∞.

Step 3: For Case III.

Step 3.1: If there exists an ε∗31 that satisfies 2CS ≤ G4(ε
∗

31) and the following

conditions,
dETP3(ε

∗

31)

dε
= 0 and

d2ETP3(ε
∗

31)

dε2
< 0, then determine

T ∗∗

P3(ε
∗∗

3 ) = TP3(ε
∗

31) by (36), set ETP ∗

3 (T
∗∗

P3, ε
∗∗

3 ) by (22), and go to

Step 4. Otherwise, ETP3(TP3, ε3) = ∞.

Step 4: Let ETR(T ∗

P , ε
∗) = Max{ETP1(T

∗∗

P1, ε
∗∗

1 ), ETP2(T
∗∗

P2, ε
∗∗

2 ), ETP3(T
∗∗

P3, ε
∗∗

3 )}.

4. Numerical Study

4.1. Numerical example

To illustrate the solution procedure used for the model presented in Section 3, we

consider a case featuring the following data: P = 10000, d = 8000 units, d1 = 7000 units,

d2 = 1000 units, Ie = 0.1, IP = 0.15, M = 0.1 year, h = 20$ per unit, CCM = 300$ per

time, Cinsp = 5$ per unit, Cm = 15$ per unit, CCdM = 40$ per unit time, CS = 500$ per

time, S1 = 30$ per unit, and S2 = 20$ per unit. Moreover, we assume that the system is

in the in-control state, and the defective rate is 0.05 (ain = 0.05); when the system is in an

out-of-control” state, the defective rate is 0.20 (aout = 0.20). The basic system shifting

rate before executing predictive maintenance is γ = 1.41, and the efficiency coefficient of

quantifying the predictive maintenance efforts is η = 0.5.

Using Mathematica 10.0 to run the algorithm, the optimal solution could be found

when M ≤ TP , i.e., ETP ∗(TP , ε) = ETP ∗

1 (TP , ε). The optimal values of the objective

function and decision variables are listed in Table 1. Figures 5 and 6 illustrate graphically

the relationship between the expected total revenue and the two decision variables: the

predictive maintenance efforts ε, and the production runtime, TP .

Table 1: The result of numerical example.

ETP ∗

1 (TP , ε) TP ε

70025.7 0.103 2.51
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Figure 5: The 2d-figure of expected profit ETP ∗ with respect to two decision variable.

Figure 6: The 3d-figure of expected profit ETP ∗ with respect to two decision variable.

4.2. Sensitivity analysis

We provide a sensitivity analysis of the optimal ETP to control several parameter

values (-50%, -25%, +25%, +50%) in the model. Only one parameter is changed at

the same time; other parameters are kept as in the previous section. The results of the

sensitivity analysis for the model are listed below.

Table 2: Sensitivity analysis of perfect item selling price.

S1 ETP ε TP

50% 90456.3 3.165 0.115

25% 87689.5 2.876 0.1106

-25% -9989.1 2.098 0.1001

-50% -18973.2 1.813 0.987

Relationship Positive Positive Positive
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1. The expected total revenue ETP is significantly influenced by the selling price of

perfect item S1 (Table 2). The total expected profit sharply decreases since the
reducing of S1. Similarly, it also increases with an increase in the selling price of
an imperfect item (S2), credit time (M), and interest earned (Ie). However, the

total expected profit decreases with an increase in setup cost (CS), holding cost (h),
corrective maintenance cost (Ccm), predictive maintenance cost (CPdM ), and interest
paid (IP ) (see Figure 7).

Figure 7: Sensitivity analysis of different parameter on the total profit.

2. The predictive maintenance effort ε increases as the setup cost (CS), corrective main-
tenance cost (Ccm), and selling price of a perfect item (S1) increase. However, it

decreases with an increase in holding cost (h), predictive maintenance cost (CPdM ),
selling price of an imperfect item (S2), credit time (M), interest earned (Ie), and
interest paid (IP ) (see Figure 8).

Figure 8: Sensitivity analysis of different parameters on the predictive maintenance effort.
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3. The production runtime TP decreases with an increase in holding cost (h), predictive

maintenance cost (CPdM ), selling price of an imperfect item (S2), credit time (M),

interest earned (Ie), and interest paid (IP ) (see Figure 9). However, it increases as

the setup cost (CS), corrective maintenance cost (Ccm), and the selling price of a

perfect item (S1) increase (see Figure 9).

Figure 9: Sensitivity analysis of different parameter on the production runtime.

5. Conclusion

This paper develops an imperfect production model considering predictive mainte-

nance and trade credit. An increase in the predictive maintenance effort reduces the

failure rate, the corrective maintenance cost decreases, and the annual profit increases.

We determined the optimal production runtime and predictive maintenance effort to

maximize the total expected profit. Under trade credit policy, we divided the model

into three cases. An algorithm was developed to solve the three-branch of the total

expected revenue function. Finally, we provided a numerical example to illustrate the

solution procedure and sensitivity analysis to show the influences of system parameters

on decisions and profit. The results show that, if the suppliers provide more credit time,

the profit of the company could increase by reducing the production time. Especially,

the selling price for the perfect item has a significant effect on the profit. A decrease in

selling price could make the profit reduce sharply. In a different way, the predictive main-

tenance effort and production runtime are negatively related to interest earned, credit

period, and the interest charged. Therefore, when the credit period and interest earned

decrease, the company should examine how to increase the predictive maintenance effort

and production runtime to balance the profit.

We only considered trade credit that suppliers provide to retailers. In practice, trade

credit is given twice: the suppliers provide trade credit to retailers, and retailers also

provide trade credit to end customers. In addition, the demand function is given, and no

shortages are considered in this study. Future research may consider other conditions,
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such as two periods of trade credit, uncertainty demand, allowed shortages, and pricing

problems.
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