Multiple Level Programming: An Introduction

Hsu-Shih Shih, Ph.D.

Tamkang University

Management Sciences • Decision Analysis Laboratory | Since 1972

Brief Contents

- Introduction
- Definition
- Characteristics
- Applications
- Techniques
- Future Research

Questions and Comments

Tamkang University Management Sciences • Decision Analysis Laboratory

Introduction

- What is multiple level programming?
- Decentralized planning in organizations
- Where are its applications?
- Many areas with conflict resolution
- What's techniques deal with the problems?
- Traditional and non-traditional techniques
- Future Research

Definition

Multiple Level Programming (MLP)

- To solve decentralized planning problems with multiple executors in a hierarchical organization
- Explicitly assigns each agent a unique objective and set of decision variables as well as a set of common constraints that affects all agents

Hierarchical Structure

MLP Formulation

Multi-level (k levels decentralized) mathematical programming :

where $j=1,2, \ldots, n$ represents the j th decision variable, and $k=1,2, \ldots$, K represents the k th level, respectively. In addition, the decision variable set $\cup_{k, i}\left\{x_{k d} \mid \forall i\right.$ and $\left.k\right\}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=\{x\}$.

Characteristics (I)

Common Characteristics of MLP

1) Interactive decision-making units exit within a predominantly hierarchical structure
2) Execution of decisions is sequential, from top level to bottom level
3) Each unit independently maximizes its own net benefits, but is affected by actions of other units through externalities
4) The external effect on a decision-maker's problem can be reflected in both his objective function and his set of feasible decision space

Characteristics (II)

Consider a constrain region of the bi-level programming problem

- Follower's rational reaction set
- Inducible region - non-convexity
$F(x, y)=x-4 y$
$f(y)=y$

Tamkang University Management Sciences • Decision Analysis Laboratory

Bi-level Programming- a simple case

Problem formulation
Max $f_{1}\left(x_{1}, x_{2}\right)=c_{11}{ }^{\mathrm{T}} x_{1}+c_{12}{ }^{\mathrm{T}} x_{2} \quad$ (upper level)
$x 1$
where x_{2} solves,

$$
\text { Max } f_{2}\left(x_{1}, x_{2}\right)=c_{21}{ }^{\mathrm{T}} x_{1}+c_{22}{ }^{\mathrm{T}} x_{2} \quad \text { (lower level) }
$$

$x 2$
s.t.

$$
\left(x_{1}, x_{2}\right) \in X=\left\{\left(x_{1}, x_{2}\right) \mid A_{1} x_{1}+A_{2} x_{2} \leq b, \text { and } x_{1}, x_{2} \geq 0\right\}
$$

where $c_{11}, c_{12}, c_{21}, c_{22}$, and b are vectors, A_{1} and A_{2} are matrices, and X represents the constraint region.

Bi-level Programming

- A Special Case of Two-person, Non-zero Sum Non-cooperative Game
- A general Stackelberg's (leader-follower) duopoly model Nested Optimization Problem
- NP-hard complexity

Applications (I)

Agricultural model

- Agricultural policy- Nile Valley case (Parraga, 1981)
- Milk industry (Candler and Norton, 1977)
- Mexican agriculture model (Candler and Norton, 1977)
- Water supply model (Candler et al., 1981)

Government policy

- Distribution of government resources (Kyland, 1975)
- Environmental regulation (Kolstad, 1982)

Finance model

- Bank asset portfolio (Parraga, 1981)
- Commission rate setting (Wen and Jiang, 1988)

Applications (II)

- Economic systems
- Distribution center problem (Fortuny and McCarl, 1981)
- Principle-agent model (Arrow, 1986)
- Price ceilings in the oil industry (DeSilva, 1978)

Welfare

- Allocation model of strategic weapons (Bracken et al., 1977)

Transportation

Highway network system (LeBlance and Boyce, 1986)
Others

- Network flows (Shih and Lee, 1999; Shih, 2005)
- Supply chain (Viswanarthan et al., 2001)

Techniques (I)

Extreme-point Search

- Kth-best algorithm
- Grid-search algorithm
- Fuzzy approach (Shih 1995, 2002; Shih et al., 1996)
- Interactive approach (Shih, 2002)

Transformation Approach

- Complement pivot
- Branch-and-bound
- Penalty function

Interior Point

- Primal-dual algorithm

Techniques (II)

- Decent and Heuristics
- Descent method
- Branch-and-bound
- Cutting plane
- Dynamic programming (Shih and Lee, 2001; Shih, 2005)

Intelligent Computation

- Tabu search
- Simulated annealing
- Genetic algorithm
- Artificial neural network (Shih et al., 2004)

Categories of Techniques

Tamkang University Management Sciences • Decision Analysis Laboratory

Example 1. A Trade-off Problem between Exports and Imports

```
Problem formulation
    Max \(f_{1}=2 x_{1}-x_{2}\) (effect on the export trade -1 st objective)
        \(x_{1}\)
    where \(x_{2}\) solves,
    Max \(f_{2}=x_{1}+2 x_{2}\) (profits on the product - 2 nd objective)
    s.t.
\[
\begin{array}{ll}
3 x_{1}-5 x_{2} \leq 15 & \text { ( capacity ) } \\
3 x_{1}-x_{2} \leq 21 & \text { ( management ) } \\
3 x_{1}+x_{2} \leq 27 & \text { (space ) } \\
3 x_{1}+4 x_{2} \leq 45 & \text { ( material ) } \\
x_{1}+3 x_{2} \leq 30 & \text { ( labor hours ) } \\
x_{1}, x_{2} \geq 0 & \text { ( non-negative ) }
\end{array}
\]
```


Kth-best Algorithm- Extreme-point

Solving procedure

- Step 1. Solve the upper-level problem $i=1, x_{[1]}^{*}=(7.5,1.5)$ at vertex B
$-\quad$ Step 2. Solve the lower-level problem with $x_{1}=7.5$
Solution $x^{+}=(7.5,4.5)$ between vertex D and vertex C $x+\neq x_{[1]}^{*}$, go to Step 3.
- Step 3. Consider the neighboring set of $x_{[1]}^{*}$ (vertex A and vertex C)
- Step 4. Update label $i=i+1=2$, and choose $x_{[2]}^{*}=(8,3)$ (vertex C). Go to Step 2.
- Step 2. Let $x_{1}=8$ to the lower level problem Solution $x^{+}=(8,3)$. Since $x^{+}=x_{[2]}^{*}$, the procedure is terminated. $x_{[2]}^{*}$ is the optimum

Decision (Variable) Space

Tamkang University Management Sciences • Decision Analysis Laboratory

Objective (Function) Space

Tamkang University Management Sciences • Decision Analysis Laboratory

Karush-Kuhn-Tucker Conditions

Four sets of conditions

- Stationarity
- Complete slackness
- Primal feasibility
- Dual feasibility

Karush-Kuhn-Tucker ConditionsTransformation approach

Problem formulation
Max $f_{1}=2 x_{1}-x_{2}$
x_{1}, x_{2}
s.t.

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right) \in X \\
& w_{1}\left(-3 x_{1}+5 x_{2}+15\right)=0 \\
& w_{2}\left(-3 x_{1}+x_{2}+21\right)=0 \\
& w_{3}\left(-3 x_{1}-x_{2}+27\right)=0 \\
& w_{4}\left(-3 x_{1}-4 x_{2}+45\right)=0 \\
& w_{5}\left(-x_{1}-3 x_{2}+30\right)=0 \\
& -5 w_{1}-w_{2}+w_{3}+4 w_{4}+3 w_{5}=2 \\
& w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, x_{1}, x_{2} \geq 0
\end{aligned}
$$

Separation Procedure

Problem formulation
The constraint set
$w^{\mathrm{T}}\left(A_{1} x_{1}+A_{2} x_{2}-b\right)=0$, where w is a dual vector.

The transformed two terms

$$
\begin{aligned}
& w \leq(1-\eta) M, \text { and } \\
& A_{1} x_{1}+A_{2} x_{2}-b \leq M \eta
\end{aligned}
$$

where $\eta \in\{0,1\}$ and M is a large positive constant

Concept of Fuzzy Approach

- Fuzzy Membership Functions (Zadeh, 1965)
- Tolerance of decisions
- Achievement of goal

Fuzzy Multi-objective Decision Making (Zimmermann, 1985)

- Information aggregation

Possibility theory (Zadeh, 1978)

- Imprecise range
\rightarrow Supervised search procedure

Fuzzy Approach

Problem formulation

$$
\operatorname{Max} f_{2}=2 x_{1}-x_{2}
$$

s.t.

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right) \in X \\
& \mu_{\mathrm{f} 1}\left(f_{1}(x)\right) \geq \alpha \\
& \mu_{\mathrm{x} 1}\left(x_{1}\right) \geq \beta \\
& \alpha \in[0,1] \text { and } \beta \in[0,1] \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Fuzzy Decision

Problem formulation

Max $\{\alpha, \beta, \delta\}$
s.t.

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right) \in X \\
& \mu_{\mathrm{f} 1}\left(f_{1}(x)\right)=\left(f_{1}-0\right) /(13.5-0) \geq \alpha \\
& \mu_{\mathrm{x} 1}\left(x_{1}\right)=\left(x_{1}-4.5\right) /(7.5-4.5) \geq \beta \\
& \mu_{\mathrm{x} 1}\left(x_{1}\right)=\left(8-x_{1}\right) /(8-7.5) \geq \beta \\
& \mu_{\mathrm{f} 2}\left(f_{2}(x)\right)=\left(f_{2}-10.5\right) /(21-10.5) \geq \delta \\
& x_{1}, x_{2} \geq 0 \\
& \alpha, \beta, \delta \in[0,1]
\end{aligned}
$$

Interactive Approach

Tamkang University Management Sciences • Decision Analysis Laboratory

Advantages of Fuzzy Approach

- Advantages
- Approximation of the natural of Large MLPPs
- Not increase the computational complexity
- Ease to extend to multiple levels
- DMs involve the process
- Efficient (Pareto) solution

Nested Optimization \Rightarrow Sequential Optimization

Extension to Vague Information

(a) Exceedance possibility, Pos $\left[\bar{b}_{i} \geq \underline{R}_{i}\right]>0$.

(b) Strict exceedance possibility, Pos $\left[\bar{b}_{i}>\bar{R}_{i}\right]>0$.

Vague/Imprecise data \Rightarrow Possibilistic Distribution

Dynamic Aspect of MLP (I)

Dynamic environment \Rightarrow Multi-stage MLP
(discrete space)

Dynamic Aspect of MLP (II)

- Applications:
- Shortest path problems
- Knapsack problems
- Other networks

Neural Network Approach

- Use of dynamic behavior of artificial neural networks with parallel processing
- Based on Hopfield and Tank (1985)- recurrent network
Transforming to the energy function without constraints
- Optimum solution with a steady state

Neural Network Approach

Tamkang University Management Sciences • Decision Analysis Laboratory

Future Research

- Conditions of existing Pareto-optimal
- Use of hybrid algorithms for uncertainty
- Solutions of multi-subunits
- Extension to n-level problems
- Applications of real-world problems (nonlinear or stochastic coefficients, chance constraints, multi-level multi-objectives)

Reference (I)

Review papers \& books:

- Bard, J.F. (1998), Practical Bilevel Optimization: Algorithms and Applications. Dordrecht: Springer.
- Colson, B., Marcotte, P., Savard, G. (2007), An overview of bilevel optimization.
\therefore Annals of Operations Research, 153: 235-256.
- Dempe, S. (2002). Foundations of Bilevel Programming. Boston: Kluwer.
- Dempe S, Kalashnikov, V., Pérez-Valdés, G.-A., Kalashnykova, N. (2015), Bilevel
\therefore Programming Problems: Theory, Algorithms and Applications to Energy Networks.
- Berlin: Springer.
- Migdalas, A. (1995), Bilevel programming in traffic planning: models, methods and challenge. Journal of Global Optimization, 7: 381-405.
- . Shimizu, K., Ishizuka, Y., Bard, J.F. (1997), Nondifferentiable and Two-level Mathematical Programming. Boston: Kluwer.
- Sinha, A., Malo, P., Deb, K. (2018), A Review on bilevel optimization: From classical to evolutionary approaches and applications. IEEE Transaction on Evolutionary Computation, 22(2): 276-295.
- Vicente, L.N., Calamai, P.H. (1994), Bilevel and multilevel programming: A bibliography review. Journal of Global Optimization, 5(3), 291-306.
- Wen, U.-P., Hsu, S.-T. (1991), Linear bi-level programming problems - A review. Journal of Operational Research Society, 42: 125-133.

Reference (II)

E. Stanley Lee and Hsu-shih Shih

FUZZY AND MULTI-LEVEL DECISION MAKING

AN INTERACTIVE

Springer

Studies in Fuzziness and soft computing
P11 5-7 $2710 \rightarrow+5$
Chi-Bin Cheng
Hsu-Shih Shih
E. Stanley Lee

Fuzzy and Multi-Level Decision Making: Soft Computing Approaches

Second Edition

Tamkang University Management Sciences • Decision Analysis Laboratory

Questions \& Comments

Thank you!

Tamkang University Management Sciences • Decision Analysis Laboratory

